Advertisement

Herz

pp 1–9 | Cite as

Inflammation in thoracic aortic aneurysms

  • N. E. H. Dinesh
  • D. P. ReinhardtEmail author
Main topic

Abstract

Mutations in extracellular matrix and smooth muscle cell contractile proteins predispose to thoracic aortic aneurysms in Marfan syndrome (MFS) and related disorders. These genetic alterations lead to a compromised extracellular matrix–smooth muscle cell contractile unit. The abnormal aortic tissue responds with defective mechanosensing under hemodynamic stress. Aberrant mechanosensing is associated with transforming growth factor-beta (TGF-β) hyperactivity, enhanced angiotensin-II (Ang-II) signaling, and perturbation of other cellular signaling pathways. The downstream consequences include enhanced proteolytic activity, expression of inflammatory cytokines and chemokines, infiltration of inflammatory cells in the aortic wall, vascular smooth muscle cell apoptosis, and medial degeneration. Mouse models highlight aortic inflammation as a contributing factor in the development of aortic aneurysms. Anti-inflammatory drugs and antioxidants can reduce aortic oxidative stress that prevents aggravation of aortic disease in MFS mice. Targeting TGF-β and Ang-II downstream signaling pathways such as ERK1/2, mTOR, PI3/Akt, P38/MAPK, and Rho kinase signaling attenuates disease pathogenesis. Aortic extracellular matrix degradation and medial degeneration were reduced upon inhibition of inflammatory cytokines and matrix metalloproteinases, but the latter lack specificity. Treating inflammation associated with aortic aneurysms in MFS and related disorders could prove to be beneficial in limiting disease pathogenesis.

Keywords

Extracellular matrix Aortic diseases Transforming growth factor-beta Angiotensin II Anti-inflammatory agents 

Abbreviations

Ang-II

Angiotensin-II

AT1R

Angiotensin type-1 receptor

ECM

Extracellular matrix

ERK1/2

Extracellular signal-regulated kinase 1/2

IL

Interleukin

JNK

C-Jun N‑terminal kinase

MCP-1

Macrophage chemotactic protein-1

M-CSF

Macrophage colony-stimulating factor

MFS

Marfan syndrome

MMP

Matrix metalloproteinase

MMPi

Matrix metalloproteinase inhibitors

ROS

Reactive oxygen species

TAA

Thoracic aortic aneurysm

TAD

Thoracic aortic dissection

TGF-β

Transforming growth factor-β

vSMC

Vascular smooth muscle cells

Entzündungsprozesse bei thorakalen Aortenaneurysmen

Zusammenfassung

Mutationen in Proteinen der extrazellulären Matrix (EZM) und von glatten Muskelzellen der Aorta prädisponieren zu thorakalen Aortenaneurysmen beim Marfan-Syndrom (MFS) und verwandten Erkrankungen. Diese genetischen Veränderungen führen zu einer Schädigung der kontraktilen Einheit aus EZM und glatten Muskelzellen. Das veränderte Aortengewebe reagiert mit einem defekten „mechanosensing“ (Reaktionsverhalten auf mechanische Reize) der Zelle unter hämodynamischem Stress. Das aberrante „mechanosensing“ ist mit Überaktivierung von TGF-β, verstärktem Angiotensin-II(Ang-II)-Signaling und Störungen von anderen zellulären Signalwegen assoziiert. Hierdurch kommt es zu einer verstärkten proteolytischen Aktivität, Expression inflammatorischer Zytokine und Chemokine, Einwanderung inflammatorischer Zellen in die Gefäßwand, Apoptose glatter Muskelzellen und Degeneration der Media. Mausmodelle belegen, dass eine Entzündung der Aorta ein relevanter Faktor in der Pathogenese von Aortenaneurysmen ist. Antiinflammatorische Medikamente und Antioxidanzien können den oxidativen Stress reduzieren, der zur Verschlechterung der pathologischen Veränderungen der Aorta bei MFS-Mäusen führt. Die Hemmung von Komponenten der TGF-β- und Ang-II-Signalwege (ERK1/2, mTOR, PI3/Akt, P38/MAPK, Rho-Kinase) verbessert den Verlauf der Erkrankung. Der Abbau der EZM in der Aorta und die Degeneration der Media können durch Inhibitoren von inflammatorischen Zytokinen und Matrixmetalloproteasen reduziert werden, Letztere weisen jedoch keine ausreichende Spezifität auf. Die Behandlung von Entzündungsprozessen der Aorta, die beim MFS und bei verwandten Erkrankungen mit der Ausbildung von Aneurysmen assoziiert sind, könnte sich daher als vorteilhaft erweisen, um ein Fortschreiten der Erkrankung zu verlangsamen.

Schlüsselwörter

Extrazelluläre Matrix Aortenerkrankungen „Transforming growth factor beta“ Angiotensin-II Antiinflammatorische Medikamente 

Notes

Compliance with ethical guidelines

Conflict of interest

N.E.H. Dinesh and D.P. Reinhardt declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Bradley TJ, Bowdin SC, Morel CF et al (2016) The expanding clinical spectrum of extracardiovascular and cardiovascular manifestations of heritable thoracic aortic aneurysm and dissection. Can J Cardiol 32:86–99.  https://doi.org/10.1016/j.cjca.2015.11.007 CrossRefPubMedGoogle Scholar
  2. 2.
    Milewicz DM, Prakash SK, Ramirez F (2017) Therapeutics targeting drivers of thoracic aortic aneurysms and acute aortic dissections: Insights from predisposing genes and mouse models. Annu Rev Med 68:51–67.  https://doi.org/10.1146/annurev-med-100415-022956 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dietz HC, Cutting GR, Pyeritz RE et al (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339CrossRefGoogle Scholar
  4. 4.
    Collod-Beroud G, Le Bourdelles S, Ades L et al (2003) Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database. Hum Mutat 22:199–208CrossRefGoogle Scholar
  5. 5.
    Barbier M, Gross MS, Aubart M et al (2014) MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am J Hum Genet 95:736–743.  https://doi.org/10.1016/j.ajhg.2014.10.018 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Guo DC, Regalado ES, Gong L et al (2016) LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ Res 118:928–934.  https://doi.org/10.1161/CIRCRESAHA.115.307130 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee VS, Halabi CM, Hoffman EP et al (2016) Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans. Proc Natl Acad Sci USA 113:8759–8764.  https://doi.org/10.1073/pnas.1601442113 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hucthagowder V, Sausgruber N, Kim KH et al (2006) Fibulin-4: A novel gene for an autosomal recessive cutis laxa syndrome. Am J Hum Genet 78:1075–1080CrossRefGoogle Scholar
  9. 9.
    Dasouki M, Markova D, Garola R et al (2007) Compound heterozygous mutations in fibulin-4 causing neonatal lethal pulmonary artery occlusion, aortic aneurysm, arachnodactyly, and mild cutis laxa. Am J Med Genet A 143A:2635–2641CrossRefGoogle Scholar
  10. 10.
    Capuano A, Bucciotti F, Farwell KD et al (2016) Diagnostic exome sequencing identifies a novel gene, EMILIN1, associated with autosomal-dominant hereditary connective tissue disease. Hum Mutat 37:84–97.  https://doi.org/10.1002/humu.22920 CrossRefPubMedGoogle Scholar
  11. 11.
    Boileau C, Guo DC, Hanna N et al (2012) TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet 44:916–921.  https://doi.org/10.1038/ng.2348 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bertoli-Avella AM, Gillis E, Morisaki H et al (2015) Mutations in a TGF-beta ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol 65:1324–1336.  https://doi.org/10.1016/j.jacc.2015.01.040 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Loeys BL, Chen J, Neptune ER et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281CrossRefGoogle Scholar
  14. 14.
    Van De Laar IM, Oldenburg RA, Pals G et al (2011) Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet 43:121–126.  https://doi.org/10.1038/ng.744 CrossRefPubMedGoogle Scholar
  15. 15.
    Teekakirikul P, Milewicz DM, Miller DT et al (2013) Thoracic aortic disease in two patients with juvenile polyposis syndrome and SMAD4 mutations. Am J Med Genet A 161A:185–191.  https://doi.org/10.1002/ajmg.a.35659 CrossRefPubMedGoogle Scholar
  16. 16.
    Doyle AJ, Doyle JJ, Bessling SL et al (2012) Mutations in the TGF-beta repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet 44:1249–1254.  https://doi.org/10.1038/ng.2421 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guo DC, Pannu H, Tran-Fadulu V et al (2007) Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39:1488–1493CrossRefGoogle Scholar
  18. 18.
    Wang L, Guo DC, Cao J et al (2010) Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet 87:701–707.  https://doi.org/10.1016/j.ajhg.2010.10.006 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Guo DC, Regalado E, Casteel DE et al (2013) Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am J Hum Genet 93:398–404.  https://doi.org/10.1016/j.ajhg.2013.06.019 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Michel JB, Jondeau G, Milewicz DM (2018) From genetics to response to injury: Vascular smooth muscle cells in aneurysms and dissections of the ascending aorta. Cardiovasc Res 114:578–589.  https://doi.org/10.1093/cvr/cvy006 CrossRefPubMedGoogle Scholar
  21. 21.
    Judge DP, Dietz HC (2005) Marfan’s syndrome. Lancet 366:1965–1976CrossRefGoogle Scholar
  22. 22.
    Hiratzka LF, Bakris GL, Beckman JA et al (2010) 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation 121:e266–e369.  https://doi.org/10.1161/CIR.0b013e3181d4739e CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Erbel R, Aboyans V, Boileau C et al (2014) 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J 35:2873–2926.  https://doi.org/10.1093/eurheartj/ehu281 CrossRefPubMedGoogle Scholar
  24. 24.
    Shores J, Berger KR, Murphy EA et al (1994) Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med 330:1335–1341CrossRefGoogle Scholar
  25. 25.
    Koo HK, Lawrence KA, Musini VM (2017) Beta-blockers for preventing aortic dissection in Marfan syndrome. Cochrane Database Syst Rev 11:CD11103.  https://doi.org/10.1002/14651858.CD011103.pub2 CrossRefPubMedGoogle Scholar
  26. 26.
    Rurali E, Perrucci GL, Pilato CA et al (2018) Precise therapy for thoracic aortic aneurysm in Marfan syndrome: A puzzle nearing its solution. Prog Cardiovasc Dis 61:328–335.  https://doi.org/10.1016/j.pcad.2018.07.020 CrossRefPubMedGoogle Scholar
  27. 27.
    Lindsay ME (2018) Medical management of aortic disease in children with Marfan syndrome. Curr Opin Pediatr 30:639–644.  https://doi.org/10.1097/MOP.0000000000000671 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhu L, Vranckx R, Khau Van Kien P et al (2006) Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 38:343–349CrossRefGoogle Scholar
  29. 29.
    Gao N, Huang J, He W et al (2013) Signaling through myosin light chain kinase in smooth muscles. J Biol Chem 288:7596–7605.  https://doi.org/10.1074/jbc.M112.427112 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lu H, Fagnant PM, Bookwalter CS et al (2015) Vascular disease-causing mutation R258C in ACTA2 disrupts actin dynamics and interaction with myosin. Proc Natl Acad Sci USA 112:e4168–e4177.  https://doi.org/10.1073/pnas.1507587112 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Humphrey JD, Schwartz MA, Tellides G et al (2015) Role of mechanotransduction in vascular biology: Focus on thoracic aortic aneurysms and dissections. Circ Res 116:1448–1461CrossRefGoogle Scholar
  32. 32.
    Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812.  https://doi.org/10.1038/nrm3896 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Neptune ER, Frischmeyer PA, Arking DE et al (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411CrossRefGoogle Scholar
  34. 34.
    Kaijzel EL, Van Heijningen PM, Wielopolski PA et al (2010) Multimodality imaging reveals a gradual increase in matrix metalloproteinase activity at aneurysmal lesions in live fibulin-4 mice. Circ Cardiovasc Imaging 3:567–577.  https://doi.org/10.1161/circimaging.109.933093 CrossRefPubMedGoogle Scholar
  35. 35.
    Renard M, Holm T, Veith R et al (2010) Altered TGFbeta signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur J Hum Genet 18:895–901.  https://doi.org/10.1038/ejhg.2010.45 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bellini C, Korneva A, Zilberberg L et al (2016) Differential ascending and descending aortic mechanics parallel aneurysmal propensity in a mouse model of Marfan syndrome. J Biomech 49:2383–2389.  https://doi.org/10.1016/j.jbiomech.2015.11.059 CrossRefPubMedGoogle Scholar
  37. 37.
    Moltzer E, Te Riet L, Swagemakers SM et al (2011) Impaired vascular contractility and aortic wall degeneration in fibulin-4 deficient mice: Effect of angiotensin II type 1 (AT1) receptor blockade. PLoS ONE 6:e23411.  https://doi.org/10.1371/journal.pone.0023411 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chen J, Peters A, Papke CL et al (2017) Loss of smooth muscle alpha-actin leads to NF-kappaB-dependent increased sensitivity to angiotensin II in smooth muscle cells and aortic enlargement. Circ Res 120:1903–1915.  https://doi.org/10.1161/CIRCRESAHA.117.310563 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Carta L, Smaldone S, Zilberberg L et al (2009) p38 MAPK is an early determinant of promiscuous Smad2/3 signaling in the aortas of fibrillin-1 (Fbn1)-null mice. J Biol Chem 284:5630–5636.  https://doi.org/10.1074/jbc.M806962200 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Crosas-Molist E, Meirelles T, Lopez-Luque J et al (2015) Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome. Arterioscler Thromb Vasc Biol 35:960–972.  https://doi.org/10.1161/ATVBAHA.114.304412 CrossRefPubMedGoogle Scholar
  41. 41.
    Yang HH, Van Breemen C, Chung AW (2010) Vasomotor dysfunction in the thoracic aorta of Marfan syndrome is associated with accumulation of oxidative stress. Vascul Pharmacol 52:37–45.  https://doi.org/10.1016/j.vph.2009.10.005 CrossRefPubMedGoogle Scholar
  42. 42.
    Shi M, Zhu J, Wang R et al (2011) Latent TGF-beta structure and activation. Nature 474:343–349CrossRefGoogle Scholar
  43. 43.
    Wipff PJ, Rifkin DB, Meister JJ et al (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179:1311–1323CrossRefGoogle Scholar
  44. 44.
    Cook JR, Carta L, Benard L et al (2014) Abnormal muscle mechanosignaling triggers cardiomyopathy in mice with Marfan syndrome 168. J Clin Invest 124:1329–1339.  https://doi.org/10.1172/jci71059 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tomasek JJ, Gabbiani G, Hinz B et al (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363CrossRefGoogle Scholar
  46. 46.
    Leung DY, Glagov S, Mathews MB (1976) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191:475–477CrossRefGoogle Scholar
  47. 47.
    Habashi JP, Judge DP, Holm TM et al (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121CrossRefGoogle Scholar
  48. 48.
    Segura AM, Luna RE, Horiba K et al (1998) Immunohistochemistry of matrix metalloproteinases and their inhibitors in thoracic aortic aneurysms and aortic valves of patients with Marfan’s syndrome. Circulation 98:II331–II337PubMedGoogle Scholar
  49. 49.
    Bunton TE, Biery NJ, Myers L et al (2001) Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ Res 88:37–43CrossRefGoogle Scholar
  50. 50.
    Cook JR, Clayton NP, Carta L et al (2015) Dimorphic effects of transforming growth factor-beta signaling during aortic aneurysm progression in mice suggest a combinatorial therapy for Marfan syndrome. Arterioscler Thromb Vasc Biol 35:911–917CrossRefGoogle Scholar
  51. 51.
    Goumans MJ, Liu Z, Ten DP (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19:116–127CrossRefGoogle Scholar
  52. 52.
    Kagami S, Border WA, Miller DE et al (1994) Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest 93:2431–2437CrossRefGoogle Scholar
  53. 53.
    Sun Y, Zhang JQ, Zhang J et al (1998) Angiotensin II, transforming growth factor-beta1 and repair in the infarcted heart. J Mol Cell Cardiol 30:1559–1569CrossRefGoogle Scholar
  54. 54.
    Wang M, Zhao D, Spinetti G et al (2006) Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall. Arterioscler Thromb Vasc Biol 26:1503–1509CrossRefGoogle Scholar
  55. 55.
    Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176PubMedPubMedCentralGoogle Scholar
  56. 56.
    Zilberberg L, Todorovic V, Dabovic B et al (2012) Specificity of latent TGF-beta binding protein (LTBP) incorporation into matrix: Role of fibrillins and fibronectin. J Cell Physiol 227:3828–3836CrossRefGoogle Scholar
  57. 57.
    Wang M, Zhang J, Spinetti G et al (2005) Angiotensin II activates matrix metalloproteinase type II and mimics age-associated carotid arterial remodeling in young rats. Am J Pathol 167:1429–1442CrossRefGoogle Scholar
  58. 58.
    Ruddy JM, Jones JA, Stroud RE et al (2009) Differential effects of mechanical and biological stimuli on matrix metalloproteinase promoter activation in the thoracic aorta. Circulation 120:S262–S268.  https://doi.org/10.1161/CIRCULATIONAHA.108.843581 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gibbons GH, Pratt RE, Dzau VJ (1992) Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest 90:456–461CrossRefGoogle Scholar
  60. 60.
    Nagasawa A, Yoshimura K, Suzuki R et al (2013) Important role of the angiotensin II pathway in producing matrix metalloproteinase-9 in human thoracic aortic aneurysms. J Surg Res 183:472–477.  https://doi.org/10.1016/j.jss.2012.12.012 CrossRefPubMedGoogle Scholar
  61. 61.
    Holm TM, Habashi JP, Doyle JJ et al (2011) Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332:358–361.  https://doi.org/10.1126/science.1192149 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Habashi JP, Doyle JJ, Holm TM et al (2011) Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 332:361–365.  https://doi.org/10.1126/science.1192152 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lavoie P, Robitaille G, Agharazii M et al (2005) Neutralization of transforming growth factor-beta attenuates hypertension and prevents renal injury in uremic rats. J Hypertens 23:1895–1903CrossRefGoogle Scholar
  64. 64.
    Lim DS, Lutucuta S, Bachireddy P et al (2001) Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 103:789–791CrossRefGoogle Scholar
  65. 65.
    Lee JJ, Galatioto J, Rao S et al (2016) Losartan attenuates degradation of aorta and lung tissue micromechanics in a mouse model of severe Marfan syndrome. Ann Biomed Eng 44:2994–3006.  https://doi.org/10.1007/s10439-016-1616-4 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Brooke BS, Habashi JP, Judge DP et al (2008) Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med 358:2787–2795.  https://doi.org/10.1056/NEJMoa0706585 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Singh MN, Lacro RV (2016) Recent clinical drug trials evidence in Marfan syndrome and clinical implications. Can J Cardiol 32:66–77.  https://doi.org/10.1016/j.cjca.2015.11.003 CrossRefPubMedGoogle Scholar
  68. 68.
    Groenink M, Den Hartog AW, Franken R et al (2013) Losartan reduces aortic dilatation rate in adults with Marfan syndrome: A randomized controlled trial. Eur Heart J 34:3491–3500.  https://doi.org/10.1093/eurheartj/eht334 CrossRefPubMedGoogle Scholar
  69. 69.
    Franken R, Den Hartog AW, Radonic T et al (2015) Beneficial outcome of losartan therapy depends on type of FBN1 mutation in Marfan syndrome. Circ Cardiovasc Genet 8:383–388.  https://doi.org/10.1161/CIRCGENETICS.114.000950 CrossRefPubMedGoogle Scholar
  70. 70.
    Milleron O, Arnoult F, Ropers J et al (2015) Marfan Sartan: A randomized, double-blind, placebo-controlled trial. Eur Heart J 36:2160–2166.  https://doi.org/10.1093/eurheartj/ehv151 CrossRefPubMedGoogle Scholar
  71. 71.
    Milewicz DM, Trybus KM, Guo DC et al (2017) Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler Thromb Vasc Biol 37:26–34.  https://doi.org/10.1161/ATVBAHA.116.303229 CrossRefPubMedGoogle Scholar
  72. 72.
    Sellers SL, Milad N, Chan R et al (2018) Inhibition of Marfan syndrome aortic root dilation by losartan: Role of angiotensin II receptor type 1‑independent activation of endothelial function. Am J Pathol 188:574–585.  https://doi.org/10.1016/j.ajpath.2017.11.006 CrossRefPubMedGoogle Scholar
  73. 73.
    Oller J, Mendez-Barbero N, Ruiz EJ et al (2017) Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat Med 23:200–212CrossRefGoogle Scholar
  74. 74.
    Pereira L, Lee SY, Gayraud B et al (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823CrossRefGoogle Scholar
  75. 75.
    Judge DP, Biery NJ, Keene DR et al (2004) Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 114:172–181CrossRefGoogle Scholar
  76. 76.
    Hibender S, Wanga S, Van Der Made I et al (2019) Renal cystic disease in the Fbn1C1039G/+ Marfan mouse is associated with enhanced aortic aneurysm formation. Cardiovasc Pathol 38:1–6CrossRefGoogle Scholar
  77. 77.
    Guo G, Booms P, Halushka M et al (2006) Induction of macrophage chemotaxis by aortic extracts of the mgR Marfan mouse model and a GxxPG-containing fibrillin-1 fragment. Circulation 114:1855–1862CrossRefGoogle Scholar
  78. 78.
    Chung AWY, Yang HHC, Radomski MW et al (2008) Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ Res 102:e73–e85.  https://doi.org/10.1161/circresaha.108.174367 CrossRefPubMedGoogle Scholar
  79. 79.
    He R, Guo DC, Estrera AL et al (2006) Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg 131:671–678CrossRefGoogle Scholar
  80. 80.
    He R, Guo DC, Sun W et al (2008) Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms, and sporadic aneurysms. J Thorac Cardiovasc Surg 136:922–929CrossRefGoogle Scholar
  81. 81.
    Radonic T, De Witte P, Groenink M et al (2012) Inflammation aggravates disease severity in Marfan syndrome patients. PLoS ONE 7:e32963.  https://doi.org/10.1371/journal.pone.0032963 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Nataatmadja M, West J, West M (2006) Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm. Circulation 114:I371–377CrossRefGoogle Scholar
  83. 83.
    Han Y, Runge MS, Brasier AR (1999) Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors. Circ Res 84:695–703CrossRefGoogle Scholar
  84. 84.
    Lamouille S, Derynck R (2007) Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 178:437–451CrossRefGoogle Scholar
  85. 85.
    Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139.  https://doi.org/10.1038/cr.2008.328 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Suzuki J, Jin ZG, Meoli DF et al (2006) Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circ Res 98:811–817CrossRefGoogle Scholar
  87. 87.
    Satoh K, Nigro P, Matoba T et al (2009) Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat Med 15:649–656.  https://doi.org/10.1038/nm.1958 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Chung AWY, Au Yeung K, Sandor GGS et al (2007) Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome. Circ Res 101:512–522CrossRefGoogle Scholar
  89. 89.
    Wang C, Qian X, Sun X et al (2015) Angiotensin II increases matrix metalloproteinase 2 expression in human aortic smooth muscle cells via AT1R and ERK1/2. Exp Biol Med 240:1564–1571.  https://doi.org/10.1177/1535370215576312 CrossRefGoogle Scholar
  90. 90.
    Kim ES, Sohn YW, Moon A (2007) TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett 252:147–156CrossRefGoogle Scholar
  91. 91.
    Safina A, Vandette E, Bakin AV (2007) ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene 26:2407–2422CrossRefGoogle Scholar
  92. 92.
    Selvamurugan N, Kwok S, Alliston T et al (2004) Transforming growth factor-beta 1 regulation of collagenase-3 expression in osteoblastic cells by cross-talk between the Smad and MAPK signaling pathways and their components, Smad2 and Runx2. J Biol Chem 279:19327–19334CrossRefGoogle Scholar
  93. 93.
    Huang J, Yamashiro Y, Papke CL et al (2013) Angiotensin-converting enzyme-induced activation of local angiotensin signaling is required for ascending aortic aneurysms in fibulin-4-deficient mice. Sci Transl Med 5(181):183ra158.  https://doi.org/10.1126/scitranslmed.3005025 CrossRefGoogle Scholar
  94. 94.
    Recinos A 3rd, Lejeune WS, Sun H et al (2007) Angiotensin II induces IL-6 expression and the Jak-STAT3 pathway in aortic adventitia of LDL receptor-deficient mice. Atherosclerosis 194:125–133CrossRefGoogle Scholar
  95. 95.
    Ishibashi M, Egashira K, Zhao Q et al (2004) Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 24:e174–e178CrossRefGoogle Scholar
  96. 96.
    Ejiri J, Inoue N, Tsukube T et al (2003) Oxidative stress in the pathogenesis of thoracic aortic aneurysm: protective role of statin and angiotensin II type 1 receptor blocker. Cardiovasc Res 59:988–996CrossRefGoogle Scholar
  97. 97.
    Thomas M, Gavrila D, Mccormick ML et al (2006) Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E‑deficient mice. Circulation 114:404–413.  https://doi.org/10.1161/CIRCULATIONAHA.105.607168 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol, Cell Physiol 280:C53–C60CrossRefGoogle Scholar
  99. 99.
    Pope NH, Salmon M, Johnston WF et al (2015) Interleukin-6 receptor inhibition prevents descending thoracic aortic aneurysm formation. Ann Thorac Surg 100:1620–1626.  https://doi.org/10.1016/j.athoracsur.2015.05.009 CrossRefPubMedGoogle Scholar
  100. 100.
    Liu C, Zhang C, Jia L et al (2018) Interleukin-3 stimulates matrix metalloproteinase 12 production from macrophages promoting thoracic aortic aneurysm/dissection. Clin Sci 132:655–668.  https://doi.org/10.1042/CS20171529 CrossRefPubMedGoogle Scholar
  101. 101.
    Johnston WF, Salmon M, Pope NH et al (2014) Inhibition of interleukin-1beta decreases aneurysm formation and progression in a novel model of thoracic aortic aneurysms. Circulation 130:S51–S59.  https://doi.org/10.1161/CIRCULATIONAHA.113.006800 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Zhang L, Liao MF, Tian L et al (2011) Overexpression of interleukin-1beta and interferon-gamma in type I thoracic aortic dissections and ascending thoracic aortic aneurysms: Possible correlation with matrix metalloproteinase-9 expression and apoptosis of aortic media cells. Eur J Cardiothorac Surg 40:17–22.  https://doi.org/10.1016/j.ejcts.2010.09.019 CrossRefPubMedGoogle Scholar
  103. 103.
    Jiang YF, Guo LL, Zhang LW et al (2018) Local upregulation of interleukin-1 beta in aortic dissecting aneurysm: correlation with matrix metalloproteinase-2, 9 expression and biomechanical decrease. Interact Cardiovasc Thorac Surg.  https://doi.org/10.1093/icvts/ivy256 CrossRefPubMedGoogle Scholar
  104. 104.
    Biswas P, Delfanti F, Bernasconi S et al (1998) Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood 91:258–265PubMedGoogle Scholar
  105. 105.
    Ju X, Ijaz T, Sun H et al (2014) IL-6 regulates extracellular matrix remodeling associated with aortic dilation in a fibrillin-1 hypomorphic mgR/mgR mouse model of severe Marfan syndrome. J Am Heart Assoc 3:e476CrossRefGoogle Scholar
  106. 106.
    Fan J, Li X, Yan YW et al (2012) Curcumin attenuates rat thoracic aortic aneurysm formation by inhibition of the c‑Jun N‑terminal kinase pathway and apoptosis. Nutrition 28:1068–1074.  https://doi.org/10.1016/j.nut.2012.02.006 CrossRefPubMedGoogle Scholar
  107. 107.
    Zhou B, Li W, Zhao G et al (2018) Rapamycin prevents thoracic aortic aneurysm and dissection in mice. J Vasc Surg.  https://doi.org/10.1016/j.jvs.2018.05.246 CrossRefPubMedGoogle Scholar
  108. 108.
    Pagano MB, Zhou HF, Ennis TL et al (2009) Complement-dependent neutrophil recruitment is critical for the development of elastase-induced abdominal aortic aneurysm. Circulation 119:1805–1813.  https://doi.org/10.1161/CIRCULATIONAHA.108.832972 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Ren W, Liu Y, Wang X et al (2018) The complement C3a-C3aR axis promotes development of thoracic aortic dissection via regulation of MMP2 expression. J Immunol 200:1829–1838.  https://doi.org/10.4049/jimmunol.1601386 CrossRefPubMedGoogle Scholar
  110. 110.
    Franken R, Hibender S, Den Hartog AW et al (2014) No beneficial effect of general and specific anti-inflammatory therapies on aortic dilatation in Marfan mice. PLoS ONE 9:e107221.  https://doi.org/10.1371/journal.pone.0107221 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Kurobe H, Matsuoka Y, Hirata Y et al (2013) Azelnidipine suppresses the progression of aortic aneurysm in wild mice model through anti-inflammatory effects. J Thorac Cardiovasc Surg 146:1501–1508.  https://doi.org/10.1016/j.jtcvs.2013.02.073 CrossRefPubMedGoogle Scholar
  112. 112.
    Xiong W, Knispel RA, Dietz HC et al (2008) Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J Vasc Surg 47:166–172CrossRefGoogle Scholar
  113. 113.
    Yang HH, Kim JM, Chum E et al (2010) Effectiveness of combination of losartan potassium and doxycycline versus single-drug treatments in the secondary prevention of thoracic aortic aneurysm in Marfan syndrome. J Thorac Cardiovasc Surg 140:305–312CrossRefGoogle Scholar
  114. 114.
    Thompson RW, Baxter BT (1999) MMP inhibition in abdominal aortic aneurysms. Rationale for a prospective randomized clinical trial. Ann N Y Acad Sci 878:159–178CrossRefGoogle Scholar
  115. 115.
    Lindeman JH, Abdul-Hussien H, Van Bockel JH et al (2009) Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm: Doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation 119:2209–2216.  https://doi.org/10.1161/CIRCULATIONAHA.108.806505 CrossRefPubMedGoogle Scholar
  116. 116.
    Dodd BR, Spence RA (2011) Doxycycline inhibition of abdominal aortic aneurysm growth: A systematic review of the literature. Curr Vasc Pharmacol 9:471–478CrossRefGoogle Scholar
  117. 117.
    Meijer CA, Stijnen T, Wasser MN et al (2013) Doxycycline for stabilization of abdominal aortic aneurysms: A randomized trial. Ann Intern Med 159:815–823CrossRefGoogle Scholar
  118. 118.
    Treharne GD, Boyle JR, Goodall S et al (1999) Marimastat inhibits elastin degradation and matrix metalloproteinase 2 activity in a model of aneurysm disease. Br J Surg 86:1053–1058CrossRefGoogle Scholar
  119. 119.
    Bigatel DA, Elmore JR, Carey DJ et al (1999) The matrix metalloproteinase inhibitor BB-94 limits expansion of experimental abdominal aortic aneurysms. J Vasc Surg 29:130–138CrossRefGoogle Scholar
  120. 120.
    Winer A, Adams S, Mignatti P (2018) Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol Cancer Ther 17:1147–1155.  https://doi.org/10.1158/1535-7163.MCT-17-0646 CrossRefPubMedGoogle Scholar
  121. 121.
    Zucker S, Cao J, Chen WT (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of Anatomy and Cell Biology and Faculty of DentistryMcGill UniversityMontrealCanada
  2. 2.Department of Anatomy and Cell BiologyMcGill UniversityMontrealCanada

Personalised recommendations