Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lebensstilintervention in der Primärprävention von kardiovaskulären Erkrankungen

Lifestyle intervention in the primary prevention of cardiovascular diseases


Kardiovaskuläre Erkrankungen sind die führende Todesursache weltweit. In der Primärprävention haben Lebensstilfaktoren einen hohen Stellenwert und können das Risiko für kardiale Erkrankungen um bis zu 70 % reduzieren. Zu diesem Lebensstil gehören sowohl nach europäischen als auch nach amerikanischen Leitlinien das lebenslange Nichtrauchen, eine kardioprotektive Ernährung (niedriger Anteil gesättigter Fettsäuren, hoher Anteil an ungesättigten Fettsäuren, salzarm), möglichst tägliche körperliche Aktivität von mindestens 150 min/Woche bei moderater oder 75 min/Woche bei höher intensiver körperlicher Aktivität, ein Körpergewicht mit einem Body-Mass-Index zwischen 20 und 25 kg/m2, arterielle Blutdruckwerte unter 140/90 mm Hg (optimal: <130/80 mm Hg) sowie LDL(„low-density lipoprotein“)-Cholesterin-Zielwerte in Abhängigkeit vom kardiovaskulären Risiko und ein normaler Glukosestoffwechsel bei Diabetes mellitus Typ 2 mit einer Einstellung des HbA1c unter 7 %. Lebensstilmaßnahmen mit Gewichtsreduktion und Intensivierung der körperlichen Aktivität können kardiometabolische Risikofaktoren verbessern. So sind Senkungen des systolischen und diastolischen Blutdrucks von etwa 10–15 mm Hg, HbA1c-Senkungen von etwa 1 % und Triglyzeridsenkungen von zirka 30–40 % möglich. LDL-Cholesterin und Lipoprotein(a) können kaum beeinflusst werden. Jenseits der Empfehlungen zum kardioprotektiven Lebensstil ist ggf. in Abhängigkeit vom kardiovaskulären Risikoprofil zusätzlich eine medikamentöse Therapie indiziert.


Cardiovascular diseases are the leading cause of death worldwide. Adherence to a healthy lifestyle lifelong is capable of significantly reducing the cardiovascular risk by up to 70% and is therefore a key component in primary prevention of cardiovascular disease. According to the European and American guidelines lifestyle interventions include not smoking, daily physical activity of ≥150 min/week at moderate intensity or 75 min/week for higher intensity physical activity, a cardioprotective nutrition (high proportion of unsaturated fatty acids, low amounts of saturated fatty acids and low salt intake), normal body weight (body mass index 20–25 kg/m2), arterial blood pressure <140/90 mm Hg (optimum <130/80 mm Hg), low-density lipoprotein (LDL)-cholesterol target values depending on the cardiovascular risk and a normal glucose metabolism in type 2 diabetes mellitus with adjustment of a HbA1c to <7%. Lifestyle measures with weight reduction and intensification of physical activity can improve the cardiometabolic risk factors. In this way reduction of the systolic and diastolic blood pressures by approximately 10–15 mm Hg, reduction of HbA1c by approximately 1 % and reduction of triglycerides by ca. 30–40 % are possible. The LDL-cholesterol and lipoprotein(a) levels cannot be easily influenced. Beyond the recommendations for a cardioprotective lifestyle, additional pharmacological therapy may have to be added depending on the cardiovascular risk profile.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2


  1. 1.

    Halle M, Esefeld K, Schindler M, Schunkert H (2019) Exercise hypertension: Link to myocardial fibrosis in athletes? Eur J Prev Cardiol.

  2. 2.

    Erdmann J, Kessler T, Munoz Venegas L, Schunkert H (2018) A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 114(9):1241–1257

  3. 3.

    Arnett DK, Blumenthal RS, Albert MA et al (2019) 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 74(10):1376–1414

  4. 4.

    Piepoli MF, Hoes AW, Agewall S et al (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol 23(11):Np1–Np96

  5. 5.

    Piepoli MF, Hoes AW, Agewall S et al (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 37(29):2315–2381

  6. 6.

    Freeman AM, Morris PB, Aspry K et al (2018) A clinician’s guide for trending cardiovascular nutrition controversies: part II. J Am Coll Cardiol 72(5:553–568

  7. 7.

    Freeman AM, Morris PB, Barnard N et al (2017) Trending cardiovascular nutrition controversies. J Am Coll Cardiol 69(9):1172–1187

  8. 8.

    Dehghan M, Mente A, Zhang X et al (2017) Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 390(10107):2050–2062

  9. 9.

    Abdelhamid AS, Martin N, Bridges C et al (2018) Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev.

  10. 10.

    Bhatt DL, Steg PG, Miller M et al (2019) Cardiovascular risk reduction with Icosapent ethyl for hypertriglyceridemia. N Engl J Med 380(1):11–22

  11. 11.

    Estruch R, Ros E, Salas-Salvado J et al (2018) Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 378(25):e34

  12. 12.

    Martinez-Gonzalez MA, Sanchez-Tainta A, Corella D et al (2014) A provegetarian food pattern and reduction in total mortality in the Prevencion con Dieta Mediterranea (PREDIMED) study. Am J Clin Nutr 100(Suppl 1):320S–328S

  13. 13.

    Tharrey M, Mariotti F, Mashchak A et al (2018) Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: the Adventist Health Study‑2 cohort. Int J Epidemiol 47(5):1603–1612

  14. 14.

    Kiage JN, Merrill PD, Robinson CJ et al (2013) Intake of trans fat and all-cause mortality in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) cohort. Am J Clin Nutr 97(5):1121–1128

  15. 15.

    Dehghan M, Mente A, Rangarajan S et al (2018) Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet 392(10161):2288–2297

  16. 16.

    Song M, Fung TT, Hu FB et al (2016) Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med 176(10):1453–1463

  17. 17.

    Sacks FM, Svetkey LP, Vollmer WM et al (2001) Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (dash) diet. N Engl J Med 344(1):3–10

  18. 18.

    Cook NR, Cutler JA, Obarzanek E et al (2007) Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ 334(7599):885–888

  19. 19.

    Lassale C, Tzoulaki I, Moons KGM et al (2018) Separate and combined associations of obesity and metabolic health with coronary heart disease: a pan-European case-cohort analysis. Eur Heart J 39(5):397–406

  20. 20.

    Look ARG, Wing RR, Bolin P et al (2013) Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 369(2):145–154

  21. 21.

    Abed HS, Nelson AJ, Richardson JD et al (2015) Impact of weight reduction on pericardial adipose tissue and cardiac structure in patients with atrial fibrillation. Am Heart J 169(5):655–662.e2

  22. 22.

    Kitzman DW, Brubaker P, Morgan T et al (2016) Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 315(1):36–46

  23. 23.

    Middeldorp ME, Pathak RK, Meredith M et al (2018) PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: the REVERSE-AF study. Europace 20(12):1929–1935.

  24. 24.

    Lavie CJ, Pandey A, Lau DH et al (2017) Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis: effects of weight loss and exercise. J Am Coll Cardiol 70(16):2022–2035

  25. 25.

    Alonso A, Bahnson JL, Gaussoin SA et al (2015) Effect of an intensive lifestyle intervention on atrial fibrillation risk in individuals with type 2 diabetes: the Look AHEAD randomized trial. Am Heart J 170(4):770–777.e5

  26. 26.

    Pandey A, Parashar A, Kumbhani DJ et al (2015) Exercise training in patients with heart failure and preserved ejection fraction: meta-analysis of randomized control trials. Circ Heart Fail 8(1):33–40

  27. 27.

    Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2(1):e4473

  28. 28.

    Aune D, Norat T, Leitzmann M et al (2015) Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol 30(7):529–542

  29. 29.

    Fikenzer K, Fikenzer S, Laufs U, Werner C (2018) Effects of endurance training on serum lipids. Vasc Pharmacol 101:9–20

  30. 30.

    Cornelissen VA, Fagard RH (2005) Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 46(4):667–675

  31. 31.

    Bruning RS, Sturek M (2015) Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog Cardiovasc Dis 57(5):443–453

  32. 32.

    Sattelmair J, Pertman J, Ding EL et al (2011) Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation 124(7):789–795

  33. 33.

    Pandey A, Garg S, Khunger M et al (2015) Dose-response relationship between physical activity and risk of heart failure: a meta-analysis. Circulation 132(19):1786–1794

  34. 34.

    Morseth B, Lochen ML, Ariansen I et al (2018) The ambiguity of physical activity, exercise and atrial fibrillation. Eur J Prev Cardiol 25(6):624–636

  35. 35.

    Tikkanen E, Gustafsson S, Ingelsson E (2018) Associations of fitness, physical activity, strength, and genetic risk with cardiovascular disease: longitudinal analyses in the UK Biobank study. Circulation 137(24):2583–2591

  36. 36.

    Lechner K, Halle M, Scherr J, Drezner JA (2019) Exercise recommendations in athletes with coronary artery calcification. Eur J Prev Cardiol.

  37. 37.

    Blond K, Brinklov CF, Ried-Larsen M et al (2019) Association of high amounts of physical activity with mortality risk: a systematic review and meta-analysis. Br J Sports Med.

  38. 38.

    Kyu HH, Bachman VF, Alexander LT et al (2016) Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 354:i3857

  39. 39.

    Wen CP, Wai JP, Tsai MK et al (2011) Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378(9798):1244–1253

  40. 40.

    Saint-Maurice PF, Troiano RP, Matthews CE, Kraus WE (2018) Moderate-to-vigorous physical activity and all-cause mortality: do bouts matter? J Am Heart Assoc.

  41. 41.

    Sigal RJ, Kenny GP, Boule NG et al (2007) Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med 147(6):357–369

  42. 42.

    Azadbakht L, Fard NR, Karimi M et al (2011) Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care 34(1):55–57

  43. 43.

    Huo R, Du T, Xu Y et al (2015) Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr 69(11):1200–1208

  44. 44.

    Umpierre D, Ribeiro PA, Kramer CK et al (2011) Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 305(17):1790–1799

  45. 45.

    Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344(18):1343–1350

  46. 46.

    Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403

  47. 47.

    Hamman RF, Horton E, Barrett-Connor E et al (2015) Factors affecting the decline in incidence of diabetes in the Diabetes Prevention Program Outcomes Study (DPPOS). Diabetes 64(3):989–998

  48. 48.

    Liu G, Li Y, Hu Y et al (2018) Influence of lifestyle on incident cardiovascular disease and mortality in patients with diabetes mellitus. J Am Coll Cardiol 71(25):2867–2876

  49. 49.

    Look ARG (2014) Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol 2(10):801–809

  50. 50.

    Lean ME, Leslie WS, Barnes AC et al (2018) Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391(10120):541–551

  51. 51.

    Kraus WE, Houmard JA, Duscha BD et al (2002) Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med 347(19):1483–1492

  52. 52.

    Appel LJ, Moore TJ, Obarzanek E et al (1997) A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 336(16):1117–1124

  53. 53.

    He FJ, Li J, Macgregor GA (2013) Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 346:f1325

  54. 54.

    Whelton PK, He J, Cutler JA et al (1997) Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 277(20):1624–1632

  55. 55.

    Roerecke M, Kaczorowski J, Tobe SW et al (2017) The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health 2(2):e108–e120

  56. 56.

    Xin X, He J, Frontini MG et al (2001) Effects of alcohol reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 38(5):1112–1117

  57. 57.

    Whelton SP, Chin A, Xin X, He J (2002) Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 136(7):493–503

  58. 58.

    Collaborators GBDRF (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1659–1724

  59. 59.

    Jha P, Ramasundarahettige C, Landsman V et al (2013) 21st-century hazards of smoking and benefits of cessation in the United States. N Engl J Med 368(4):341–350

  60. 60.

    Charakida M, Georgiopoulos G, Dangardt F et al (2019) Early vascular damage from smoking and alcohol in teenage years: the ALSPAC study. Eur Heart J 40(4):345–353

  61. 61.

    Ahmed AA, Patel K, Nyaku MA et al (2015) Risk of heart failure and death after prolonged smoking cessation: role of amount and duration of prior smoking. Circ Heart Fail 8(4):694–701

  62. 62.

    Li Y, Pan A, Wang DD et al (2018) Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 138(4):345–355

  63. 63.

    Lelieveld J, Klingmuller K, Pozzer A et al (2019) Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40(20):1590–1596

  64. 64.

    Munzel T, Sorensen M (2017) Noise pollution and arterial hypertension. Eur Cardiol 12(1):26–29

  65. 65.

    Williams B, Mancia G, Spiering W et al (2018) 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 39(33):3021–3104

  66. 66.

    Schindler MJ, Adams V, Halle M (2019) Exercise in heart failure-what is the optimal dose to improve pathophysiology and exercise capacity? Curr Heart Fail Rep 16(4):98–107

Download references

Author information

Correspondence to Univ.-Prof. Dr. med. Martin Halle.

Ethics declarations


V. Heinicke und M. Halle geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heinicke, V., Halle, M. Lebensstilintervention in der Primärprävention von kardiovaskulären Erkrankungen. Herz 45, 30–38 (2020).

Download citation


  • Kardiovaskuläres Risiko
  • Herzerkrankungen
  • Rauchen
  • Gesunde Ernährung
  • Körperliche Aktivität


  • Cardiovascular risk
  • Heart disease
  • Smoking
  • Healthy diet
  • Exercise