Advertisement

Herz

, Volume 45, Issue 1, pp 3–9 | Cite as

Sinnvolle Diagnostik: Genetik

  • Teresa Trenkwalder
  • Heribert Schunkert
  • Wibke ReinhardEmail author
Schwerpunkt

Zusammenfassung

Die molekulargenetische Untersuchung ist bei einigen kardiovaskulären Erkrankungen ein wichtiger Baustein der Diagnostik. Dabei hängt die diagnostische Wertigkeit der genetischen Untersuchung maßgeblich von anamnestischen und klinischen Faktoren wie dem Vorliegen einer positiven Familienanamnese und dem Krankheitsphänotyp ab. Bei kardiovaskulären Erkrankungen mit hohen Mutationsdetektionsraten wie der hypertrophen Kardiomyopathie oder primären Arrhythmiesyndromen (Long-QT-Syndrom, katecholaminerge polymorphe ventrikuläre Tachykardie) sollte die genetische Analyse zum Standard-Work-up gehören. Einen besonderen Stellenwert hat die genetische Diagnostik darüber hinaus bei der systematischen Untersuchung von Familienangehörigen der Betroffenen (Kaskadenscreening), um asymptomatische Mutationsträger rechtzeitig erkennen und präventiv therapieren zu können. Eine spezielle Indikation zur genetischen Diagnostik stellt die molekulare Autopsie, also die postmortale molekulargenetische DNA-Analyse dar. Sie dient v. a. beim plötzlichen Herztod der Todesursachenaufklärung durch den Nachweis krankheitsspezifischer Genmutationen. Bei selektivem Einsatz und sorgfältiger Interpretation der Ergebnisse können die molekulargenetischen Analysen einen sinnvollen diagnostischen und prognostischen Beitrag leisten. Perspektivisch werden sich die Anwendungsgebiete der genetischen Analysen vermutlich auch auf polygene kardiovaskuläre Krankheitsbilder ausweiten. Hier erlauben die neuen Hochdurchsatztechnologien die Bestimmung zahlreicher Varianten in unterschiedlichen Genen, die dann in polygenen Risiko-Scores zur Vorhersage der Erkrankungswahrscheinlichkeit herangezogen werden können.

Schlüsselwörter

Kardiovaskuläre Erkrankungen Genetische Untersuchung Kaskadenscreening Molekulare Autopsie Polygene Risiko-Scores 

Meaningful diagnostics: genetics

Abstract

Molecular genetic analysis is an important component in the diagnostics of some cardiovascular diseases; however, genetic testing should not be used as a screening technique as the diagnostic value strongly depends on anamnestic and clinical factors, such as a positive family history and the disease phenotype. In cardiovascular diseases with high mutation detection rates, e.g. hypertrophic cardiomyopathy and primary arrhythmia syndromes (long QT syndrome, catecholaminergic polymorphic ventricular tachycardia) genetic testing should be included in the diagnostic work-up. Family screening of first-degree relatives (cascade screening) is a particularly important application of genetic diagnostics for a timely identification of asymptomatic mutation carriers and initiation of preventive treatment. A molecular autopsy, also known as postmortem molecular genetic DNA testing, is a special indication for genetic diagnostics. It is particularly useful in the analysis of sudden cardiac death victims for the identification of disease-specific gene mutations. Therefore, given a selective use and a thorough evaluation of the test results, molecular genetic analyses can make a meaningful diagnostic and prognostic contribution. Potential applications of genetic analyses in the future are polygenic cardiovascular diseases. The use of new high-throughput technologies enables the analysis of multiple genetic variants, which can then be included in the calculation of a polygenic risk score for the prediction of the probability of a specific disease.

Keywords

Cardiovascular diseases Genetic testing Cascade screening Molecular autopsy Polygenic risk scores 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Trenkwalder, H. Schunkert und W. Reinhard geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Girolami F, Frisso G, Benelli M et al (2018) Contemporary genetic testing in inherited cardiac disease: tools, ethical issues, and clinical applications. J Cardiovasc Med 19(1):1–11CrossRefGoogle Scholar
  2. 2.
    Abul-Husn NS, Manickam K, Jones LK et al (2016) Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science 354(6319):aaf7000CrossRefGoogle Scholar
  3. 3.
    Schulze-Bahr E, Klaassen S, Abdul-Khaliq H, Schunkert H (2015) Gendiagnostik bei kardiovaskulären Erkrankungen. Kardiologe 9(3):213–243CrossRefGoogle Scholar
  4. 4.
    Alfares AA, Kelly MA, McDermott G et al (2015) Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med 17(11):880–888CrossRefGoogle Scholar
  5. 5.
    Ingles J, Sarina T, Yeates L et al (2013) Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy. Genet Med 15(12):972–977CrossRefGoogle Scholar
  6. 6.
    Bos JM, Will ML, Gersh BJ et al (2014) Characterization of a phenotype-based genetic test prediction score for unrelated patients with hypertrophic cardiomyopathy. Mayo Clin Proc 89(6):727–737CrossRefGoogle Scholar
  7. 7.
    Marcus FI, McKenna WJ, Sherrill D et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121(13):1533–1541CrossRefGoogle Scholar
  8. 8.
    Murphy SL, Anderson JH, Kapplinger JD et al (2016) Evaluation of the mayo clinic phenotype-based genotype predictor score in patients with clinically diagnosed hypertrophic cardiomyopathy. J Cardiovasc Transl Res 9(2):153–161CrossRefGoogle Scholar
  9. 9.
    Reinhard W, Trenkwalder T, Schunkert H (2017) Practical guidelines for genetic testing in cardiovascular diseases. Herz 42(5):485–491CrossRefGoogle Scholar
  10. 10.
    Robert Koch-Institut (2011) Richtlinie der Gendiagnostik-Kommission (GEKO) über die Anforderungen an die Qualifikation zur und Inhalte der genetischen Beratung gemäß §23 Abs. 2 Nr. 2a und § 23 Abs. 2 Nr. 3 GenDG. Bundesgesundhbl 54:1248–1256CrossRefGoogle Scholar
  11. 11.
    Ackerman MJ, Priori SG, Willems S et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13(8):1077–1109CrossRefGoogle Scholar
  12. 12.
    Yilmaz A, Bauersachs J, Kindermann I et al (2019) Diagnostik und Therapie der kardialen Amyloidose Positionspapier der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung (DGK). Kardiologe 13(5):264–291CrossRefGoogle Scholar
  13. 13.
    Mach F, Baigent C, Catapano AL et al (2019) ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J.  https://doi.org/10.1093/eurheartj/ehz455 CrossRefGoogle Scholar
  14. 14.
    Marian AJ, Hypertrophic Cardiomyopathy BE (2017) Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121(7):749–770CrossRefGoogle Scholar
  15. 15.
    Cirino AL, Seidman CE, Ho CY (2019) Genetic testing and counseling for hypertrophic cardiomyopathy. Cardiol Clin 37(1):35–43CrossRefGoogle Scholar
  16. 16.
    Miles CJ, Behr ER (2016) The role of genetic testing in unexplained sudden death. Transl Res 168:59–73CrossRefGoogle Scholar
  17. 17.
    Bagnall RD, Das KJ, Duflou J, Semsarian C (2014) Exome analysis-based molecular autopsy in cases of sudden unexplained death in the young. Heart Rhythm 11(4):655–662CrossRefGoogle Scholar
  18. 18.
    Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424CrossRefGoogle Scholar
  19. 19.
    Wong EK, Bartels K, Hathaway J et al (2019) Perceptions of genetic variant reclassification in patients with inherited cardiac disease. Eur J Hum Genet 27(7):1134–1142CrossRefGoogle Scholar
  20. 20.
    Doolan A, Langlois N, Semsarian C (2004) Causes of sudden cardiac death in young Australians. Med J Aust 180(3):110–112CrossRefGoogle Scholar
  21. 21.
    Semsarian C, Ingles J, Wilde AA (2015) Sudden cardiac death in the young: the molecular autopsy and a practical approach to surviving relatives. Eur Heart J 36(21):1290–1296CrossRefGoogle Scholar
  22. 22.
    Basso C, Aguilera B, Banner J et al (2017) Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch 471(6):691–705CrossRefGoogle Scholar
  23. 23.
    Skinner JR, Crawford J, Smith W et al (2011) Prospective, population-based long QT molecular autopsy study of postmortem negative sudden death in 1 to 40 year olds. Heart Rhythm 8(3):412–419CrossRefGoogle Scholar
  24. 24.
    Priori SG, Blomstrom-Lundqvist C, Mazzanti A et al (2015) 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Eur Heart J 36(41):2793–2867 (endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC))CrossRefGoogle Scholar
  25. 25.
    Al-Khatib SM, Stevenson WG, Ackerman MJ et al (2018) 2017 AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation 138(13):e272–e391Google Scholar
  26. 26.
    Kessler T, Vilne B, Schunkert H (2016) The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med 8(7):688–701CrossRefGoogle Scholar
  27. 27.
    Erdmann J, Kessler T, Munoz Venegas L, Schunkert H (2018) A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 114(9):1241–1257PubMedGoogle Scholar
  28. 28.
    Khera AV, Chaffin M, Aragam KG et al (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50(9):1219–1224CrossRefGoogle Scholar
  29. 29.
    Inouye M, Abraham G, Nelson CP et al (2018) Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol 72(16):1883–1893CrossRefGoogle Scholar
  30. 30.
    Tada H, Melander O, Louie JZ et al (2016) Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur Heart J 37(6):561–567CrossRefGoogle Scholar
  31. 31.
    Hughes MF, Saarela O, Stritzke J et al (2012) Genetic markers enhance coronary risk prediction in men: the MORGAM prospective cohorts. Plos One 7(7):e40922CrossRefGoogle Scholar
  32. 32.
    Ntalla I, Kanoni S, Zeng L et al (2019) Genetic risk score for coronary disease identifies predispositions to cardiovascular and noncardiovascular diseases. J Am Coll Cardiol 73(23):2932–2942CrossRefGoogle Scholar
  33. 33.
    Hall KT, Kessler T, Buring JE et al (2019) Genetic variation at the coronary artery disease risk locus GUCY1A3 modifies cardiovascular disease prevention effects of aspirin. Eur Heart J.  https://doi.org/10.1093/eurheartj/ehz384 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Teresa Trenkwalder
    • 1
  • Heribert Schunkert
    • 1
    • 2
  • Wibke Reinhard
    • 1
    Email author
  1. 1.Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum MünchenTechnische Universität MünchenMünchenDeutschland
  2. 2.Partner Site Munich Heart AllianceDeutsches Zentrum für Herz-Kreislauf-Forschung (DZHK)MünchenDeutschland

Personalised recommendations