Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Primärprävention der koronaren Herzkrankheit

Evidenzbasierte medikamentöse Therapie

Primary prevention of coronary heart disease

Evidence-based drug treatment

  • 374 Accesses

Zusammenfassung

Die koronare Herzkrankheit (KHK) ist die häufigste Ursache für Morbidität und Mortalität weltweit. Eine wirksame Prävention der KHK ist durch Lebensstilmaßnahmen und eine medikamentöse Therapie der kardiovaskulären Risikofaktoren möglich. Der Ausgangspunkt der Prävention ist die Bestimmung des individuellen kardiovaskulären Risikos. Evidenz für eine Reduktion von KHK-Ereignissen besteht für die Therapie einer arteriellen Hypertonie mit ACE(„angiotensin-converting enzyme“)-Hemmern, Angiotensinrezeptorblockern (ARB) und Kalziumantagonisten, für die Therapie der Hypercholesterinämie mit Statinen, Ezetimib und PCSK9(Proproteinkonvertase Subtilisin/Kexin Typ 9)-Hemmern und bei Therapie des Diabetes mellitus Typ 2 für Metformin, SGLT2(„sodium-glucose linked transporter 2“)-Hemmer und GLP(„glucagon-like peptide“)-1-Agonisten. Kein günstiges Nutzen-Risiko-Verhältnis für Menschen mit niedrigem Risiko (im Unterschied zur Datenlage in der Sekundärprävention) besteht für Acetylsalicylsäure. Ebenso liegt kein Wirksamkeitsbeleg für eine Primärprävention mit Betablockern, DPP(Dipeptidylpeptidase)-4-Hemmer, Glitazone, Sulfonylharnstoffe oder Insulin vor. Dies gilt gleichermaßen für eine medikamentöse Adipositastherapie, jegliche Substitution von Vitamin- oder Hormonpräparaten und Omega-3-Fettsäuren.

Abstract

Coronary artery disease (CAD) is the most frequent cause of morbidity and mortality worldwide. Lifestyle modifications and drug treatment of cardiovascular risk factors are able to effectively prevent CAD. The basis of prevention is the assessment of the individual cardiovascular risk, e.g. by using a validated risk score. Documented evidence for prevention of CAD is available for the control of hypertension using angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARB) and calcium antagonists, for the treatment of hypercholesterolemia using statins, ezetimibe and proprotein convertase subtilisin-kexin type 9 (PCSK-9) inhibitors and for the treatment of type 2 diabetes mellitus with metformin, sodium-glucose transporter 2 (SGLT-2) inhibitors and glucagon-like peptide 1 (GLP-1) agonists. There is no positive benefit-risk ratio for people with a low risk in the use of acetylsalicylic acid in primary prevention, in contrast to the positive recommendations for secondary prevention. There is no evidence for the efficacy of primary prevention with beta blockers, dipeptidyl peptidase 4 (DPP-4) inhibitors, glitazones, sulfonylureas or insulin. Similarly, there is no evidence for drug treatment of obesity, any supplementation with vitamins or hormone preparations or omega‑3 fatty acids.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Change history

  • 07 February 2020

    <Emphasis Type="Bold">Erratum zu:</Emphasis>

    <Emphasis Type="Bold">Herz 2020</Emphasis>

    <ExternalRef><RefSource>https://doi.org/10.1007/s00059-019-04873-3</RefSource><RefTarget Address="10.1007/s00059-019-04873-3" TargetType="DOI"/></ExternalRef>

    In den Legenden der Abb. 3 und 4 des Beitrags „Primärprävention der koronaren Herzkrankheit“ (<ExternalRef><RefSource>https://doi.org/10.1007/s00059-019-04873-3</RefSource><RefTarget Address="10.1007/s00059-019-04873-3" TargetType="DOI"/></ExternalRef>) wurden die Erläuterungen der verwendeten Abkürzungen vertauscht. Hier finden Sie nun die …

Literatur

  1. 1.

    Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale Versorgungsleitlinie: Chronische KHK. 5. Auflage, 2019. Version 1. https://www.awmf.org/uploads/tx_szleitlinien/nvl-004l_S3_KHK_2019-04.pdf. Zugegriffen: 28. Juli 2019

  2. 2.

    Statistisches Bundesamt „DESTATIS“ (2019) Sterbefälle insgesamt 2017. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Todesursachen/Tabellen/sterbefaelle-herz-kreislauf-erkrankungen-insgesamt.html. Zugegriffen: 28. Juli 2019

  3. 3.

    GBD 2017 Causes of Death Collaborators (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1736–1788

  4. 4.

    Robert Koch-Institut (RKI) (2017) 5.11 Prävalenz der koronaren Herzerkrankung (2009). https://www.rki.de/DE/Content/Gesundheitsmonitoring/Gesundheitsberichterstattung/GBEDownloadsB/Geda09/koronare_herzerkrankung.pdf?__blob=publicationFile. Zugegriffen: 23. Juli 2019

  5. 5.

    Finger JD et al (2016) Zeitliche Trends kardiometaboler Risikofaktoren bei Erwachsenen. Dtsch Ärztebl Int 113(42):712–719

  6. 6.

    Piepoli MF et al (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 252:207–274

  7. 7.

    Liu K et al (2012) Healthy lifestyle through young adulthood and the presence of low cardiovascular disease risk profile in middle age: the Coronary Artery Risk Development in (Young) Adults (CARDIA) study. Circulation 125(8):996–1004

  8. 8.

    Conroy RM et al (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24:987–1003

  9. 9.

    Ference BA et al (2019) Association of genetic variants related to combined exposure to lower low-density Lipoproteins and lower systolic blood pressure with lifetime risk of cardiovascular disease. Jama. https://doi.org/10.1001/jama.2019.14120

  10. 10.

    European Society of Cardiology (ESC) (2019) SCORE risk charts. https://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts. Zugegriffen: 12. Aug. 2019

  11. 11.

    Assmann G (2005) Assessment of cardiovascular risk—PROCAM and new algorithms. Biomed Tech 50(7–8):227–232

  12. 12.

    Diener A et al (2013) In-vivo-validation of a cardiovascular risk prediction tool: the arriba-pro study. BMC Fam Pract 14:13

  13. 13.

    Gohlke H et al (2007) CARRISMA: a new tool to improve risk stratification and guidance of patients in cardiovascular risk management in primary prevention. Eur J Cardiovasc Prev Rehabil 14:141–148

  14. 14.

    Cooper JA et al (2005) A comparison of the PROCAM and Framingham point-scoring systems for estimation of individual risk of coronary heart disease in the Second Northwick Park Heart Study. Atherosclerosis 181(1):93–100

  15. 15.

    Williams B et al (2018) 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Blood Press 27(6):314–340

  16. 16.

    Flint AC et al (2019) Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N Engl J Med 381(3):243–251

  17. 17.

    Lewington S et al (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360(9349):1903–1913

  18. 18.

    Ambrosius WT et al (2014) The design and rationale of a multicenter clinical trial comparing two strategies for control of systolic blood pressure: the Systolic Blood Pressure Intervention Trial (SPRINT). Clin Trials 11(5):532–546

  19. 19.

    Bohm M et al (2017) Achieved blood pressure and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Lancet 389(10085):2226–2237

  20. 20.

    Bangalore S et al (2007) Fixed-dose combinations improve medication compliance: a meta-analysis. Am J Med 120(8):713–719

  21. 21.

    Deutsche Gesellschaft für Kardiologie (DGK) (2019) Leitlinien der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e. V., Pocket-Leitlinie: Management der arteriellen Hypertonie (Version 2018). https://leitlinien.dgk.org/2019/pocket-leitlinie-management-der-arteriellen-hypertonie-2/. Zugegriffen: 13. Aug. 2019

  22. 22.

    Lindholm LH et al (2005) Should beta blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet 366(9496):1545–1553

  23. 23.

    Mach F et al (2019) 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz455

  24. 24.

    Deutsche Gesellschaft für Kardiologie (DGK) Leitlinien der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e. V., 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. https://leitlinien.dgk.org/2019/2019-esceas-guidelines-for-the-managementof-dyslipidaemias-lipid-modification-to-reducecardiovascular-risk/. Zugegriffen: 5. Sept. 2019

  25. 25.

    Boekholdt SM et al (2014) Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol 64(5):485–494

  26. 26.

    Ference BA et al (2019) Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321(4):364–373

  27. 27.

    Kashef MA, Giugliano G (2016) Legacy effect of statins: 20-year follow up of the West of Scotland Coronary Prevention Study (WOSCOPS). Glob Cardiol Sci Pract 2016(4):e201635

  28. 28.

    Sever PS et al (2003) Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 361(9364):1149–1158

  29. 29.

    Ridker PM et al (2009) Number needed to treat with rosuvastatin to prevent first cardiovascular events and death among men and women with low low-density lipoprotein cholesterol and elevated high-sensitivity C‑reactive protein: justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin (JUPITER). Circ Cardiovasc Qual Outcomes 2(6):616–623

  30. 30.

    Deutsches Ärzteblatt Jupiter-Studie: Prävention von venösen Thromboembolien als (geringer) Zusatznutzen. https://www.aerzteblatt.de/nachrichten/36026/Jupiter-Studie-Praevention-von-venoesen-Thromboembolien-als-(geringer)-Zusatznutzen. Zugegriffen: 16. Aug. 2019

  31. 31.

    Rossebo AB et al (2008) Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med 359(13):1343–1356

  32. 32.

    Bohula EA et al (2017) Prevention of Stroke with the Addition of Ezetimibe to Statin Therapy in Patients With Acute Coronary Syndrome in IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation 136(25):2440–2450

  33. 33.

    Stitziel NO et al (2014) Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med 371(22):2072–2082

  34. 34.

    Ference BA et al (2018) Impact of lipids on cardiovascular health: JACC health promotion series. J Am Coll Cardiol 72(10):1141–1156

  35. 35.

    Ference BA et al (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 38(32):2459–2472

  36. 36.

    Packard CJ et al (2015) New metrics needed to visualize the long-term impact of early LDL‑C lowering on the cardiovascular disease trajectory. Vascul Pharmacol 71:37–39

  37. 37.

    Ference BA et al (2015) Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study. J Am Coll Cardiol 65(15):1552–1561

  38. 38.

    Ference BA et al (2016) Variation in PCSK9 and HMGCR and Risk of Cardiovascular Disease and Diabetes. N Engl J Med 375(22):2144–2153

  39. 39.

    Burgess S et al (2018) Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a mendelian randomization analysis. JAMA Cardiol 3(7):619–627

  40. 40.

    Davies MJ et al (2018) Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the study of Diabetes (EASD). Diabetes Care 41(12):2669–2701

  41. 41.

    Deutsche Gesellschaft für Kardiologie (DGK) Leitlinien der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e. V., Pocket-Leitlinie: Diabetes (Version 2018). https://leitlinien.dgk.org/?s=diabetes. Zugegriffen: 17. Aug. 2019

  42. 42.

    Cosentino F et al (2019) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz486

  43. 43.

    Miller ME et al (2014) Effects of randomization to intensive glucose control on adverse events, cardiovascular disease, and mortality in older versus younger adults in the ACCORD Trial. Diabetes Care 37(3):634–643

  44. 44.

    Laiteerapong N et al (2019) The legacy effect in type 2 diabetes: impact of early glycemic control on future complications (the diabetes & aging study). Diabetes Care 42(3):416–426

  45. 45.

    Hirakawa Y et al (2014) Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: the ADVANCE trial. Diabetes Care 37(8):2359–2365

  46. 46.

    No authors listed (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352(9131):854–865

  47. 47.

    Harrington JL et al (2018) Should metformin remain first-line medical therapy for patients with type 2 diabetes mellitus and atherosclerotic cardiovascular disease? An alternative approach. Curr Diab Rep 18(9):64

  48. 48.

    Zinman B et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128

  49. 49.

    Mahaffey KW et al (2018) Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation 137(4):323–334

  50. 50.

    Neal B et al (2017) Rationale, design and baseline characteristics of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R): a randomized, placebo-controlled trial. Diabetes Obes Metab 19(3):387–393

  51. 51.

    Wiviott SD et al (2018) The design and rationale for the Dapagliflozin Effect on Cardiovascular Events (DECLARE)-TIMI 58 Trial. Am Heart J 200:83–89

  52. 52.

    Norhammar A et al (2019) Dapagliflozin and cardiovascular mortality and disease outcomes in a population with type 2 diabetes similar to that of the DECLARE-TIMI 58 trial: a nationwide observational study. Diabetes Obes Metab 21(5):1136–1145

  53. 53.

    Zelniker TA et al (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393(10166):31–39

  54. 54.

    Husain M et al (2019) Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 381(9):841–851

  55. 55.

    Rosenstock J et al (2019) Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA 321(1):69–79

  56. 56.

    Persson F et al (2018) Dapagliflozin is associated with lower risk of cardiovascular events and all-cause mortality in people with type 2 diabetes (CVD-REAL Nordic) when compared with dipeptidyl peptidase‑4 inhibitor therapy: A multinational observational study. Diabetes Obes Metab 20(2):344–351

  57. 57.

    Pratley RE (2006) The PROactive Study: pioglitazone in the secondary prevention of macrovascular events in patients with type 2 diabetes. Curr Diab Rep 6(1):45–46

  58. 58.

    Holman RR et al (2010) Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med 362(16):1463–1476

  59. 59.

    Gerstein HC et al (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367(4):319–328

  60. 60.

    Despres JP et al (2001) Treatment of obesity: need to focus on high risk abdominally obese patients. Bmj 322(7288):716–720

  61. 61.

    Bluher M, Laufs U (2019) New concepts for body shape-related cardiovascular risk: role of fat distribution and adipose tissue function. Eur Heart J 40(34):2856–2858

  62. 62.

    Di Angelantonio E et al (2016) Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388(10046):776–786

  63. 63.

    Bohula EA et al (2018) Effect of lorcaserin on prevention and remission of type 2 diabetes in overweight and obese patients (CAMELLIA-TIMI 61): a randomised, placebo-controlled trial. Lancet 392(10161):2269–2279

  64. 64.

    Gaziano JM et al (2018) Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial. Lancet 392(10152):1036–1046

  65. 65.

    Mahmoud AN et al (2019) Efficacy and safety of aspirin for primary prevention of cardiovascular events: a meta-analysis and trial sequential analysis of randomized controlled trials. Eur Heart J 40(7):607–617

  66. 66.

    McNeil JJ et al (2018) Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N Engl J Med 379(16):1509–1518

  67. 67.

    Bowman L et al (2018) ASCEND: A Study of Cardiovascular Events iN Diabetes: characteristics of a randomized trial of aspirin and of omega‑3 fatty acid supplementation in 15,480 people with diabetes. Am Heart J 198:135–144

  68. 68.

    Rothwell PM et al (2018) Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: analysis of individual patient data from randomised trials. Lancet 392(10145):387–399

  69. 69.

    Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360(9326):23–33

  70. 70.

    Aung K, Htay T (2018) Review: Folic acid may reduce risk for CVD and stroke, and B‑vitamin complex may reduce risk for stroke. Ann Intern Med 169(8):JC44

  71. 71.

    Asplund K (2002) Antioxidant vitamins in the prevention of cardiovascular disease: a systematic review. J Intern Med 251(5):372–392

  72. 72.

    Wald DS et al (2006) Folic acid, homocysteine, and cardiovascular disease: judging causality in the face of inconclusive trial evidence. Bmj 333(7578):1114–1117

  73. 73.

    Lonn E et al (2006) Rationale, design and baseline characteristics of a large, simple, randomized trial of combined folic acid and vitamins B6 and B12 in high-risk patients: the Heart Outcomes Prevention Evaluation (HOPE)-2 trial. Can J Cardiol 22(1):47–53

  74. 74.

    Toole JF et al (2004) Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. Jama 291(5):565–575

  75. 75.

    Yusuf S et al (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 342(3):154–160

  76. 76.

    Barbarawi M et al (2019) Vitamin D supplementation and cardiovascular disease risks in more than 83000 individuals in 21 randomized clinical trials: a meta-analysis. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2019.1870

  77. 77.

    Manson JE et al (2019) Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med 380(1):33–44

  78. 78.

    Manson JE et al (2019) Marine n‑3 fatty acids and vitamin D supplementation and primary prevention. Reply. N Engl J Med 380(19):1879–1880

  79. 79.

    Bhatt DL et al (2019) Cardiovascular risk reduction with Icosapent ethyl for hypertriglyceridemia. N Engl J Med 380(1):11–22

  80. 80.

    Collins JA (2002) Tipping the balance: the WHI study and the benefits and risks of hormone replacement therapy. Women’s Health Initiative. J Obstet Gynaecol Can 24(9):683–688

  81. 81.

    Miller VM et al (2019) The Kronos Early Estrogen Prevention Study (KEEPS): what have we learned? Menopause 26(9):1071–1084

  82. 82.

    Hodis HN et al (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374(13):1221–1231

  83. 83.

    Boardman HM et al (2015) Hormone therapy for preventing cardiovascular disease in post-menopausal women. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD002229.pub4

  84. 84.

    Budoff MJ et al (2017) Testosterone treatment and coronary artery plaque volume in older men with low testosterone. JAMA 317(7):708–716

  85. 85.

    Hall KT et al (2019) Genetic variation at the coronary artery disease risk locus GUCY1A3 modifies cardiovascular disease prevention effects of aspirin. Euro Heart J. https://doi.org/10.1093/eurheartj/ehz384

  86. 86.

    Jaspers NEM et al (2019) Prediction of individualized lifetime benefit from cholesterol lowering, blood pressure lowering, antithrombotic therapy, and smoking cessation in apparently healthy people. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz239

Download references

Author information

Correspondence to Franziska Mühleck.

Ethics declarations

Interessenkonflikt

F. Mühleck und U. Laufs geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mühleck, F., Laufs, U. Primärprävention der koronaren Herzkrankheit. Herz 45, 39–49 (2020). https://doi.org/10.1007/s00059-019-04873-3

Download citation

Schlüsselwörter

  • Metabolisches Syndrom
  • Acetylsalicylsäure
  • Vitamine
  • Fischöl
  • Hormone

Keywords

  • Metabolic syndrome
  • Aspirin
  • Vitamins
  • Fish oils
  • Hormones