Advertisement

Herz

pp 1–8 | Cite as

Kathetergeführter Mitralklappenersatz: aktueller Stand

  • J. Vogelhuber
  • M. Weber
  • J.-M. Sinning
  • G. NickenigEmail author
Schwerpunkt
  • 59 Downloads

Zusammenfassung

Nach der Aortenklappenstenose ist die Mitralklappeninsuffizienz (MI) die zweithäufigste Herzklappenerkrankung weltweit, wobei hiervon insbesondere ältere Menschen betroffen sind. Bei der sekundären oder funktionellen MI ist eine optimale medikamentöse Herzinsuffizienztherapie die erste Wahl. Wenn trotz optimaler Herzinsuffizienztherapie die Symptomatik persistiert, ist die chirurgische oder katheterinterventionelle Mitralklappenreparatur indiziert (Empfehlung Klasse IIb). Bei der symptomatischen primären MI mit einer Ejektionsfraktion >30 % ist primär die chirurgische (Klasse I) und bei hohem OP-Risiko die interventionelle Mitralklappenreparatur mittels Edge-to-Edge-Therapie angezeigt (Klasse IIb).

Der Transkatheter-Mitralklappenersatz (TMVR) rückte zuletzt als eine weitere Therapieoption in den Fokus und befindet sich aktuell in intensiver Weiterentwicklung. Zunächst fand der TMVR für Patienten mit symptomatischer Insuffizienz oder Stenose nach biologischem Mitralklappenersatz oder nach Rekonstruktion als „Valve-in-Valve“ bzw. „Valve-in-Ring“ Anwendung. Hierzu wurden herkömmliche Transkatheter-Aortenklappenprothesen verwendet. Zur Behandlung der nativen MI sind in den letzten Jahren mehrere dezidierte Transkatheter-Mitralklappenprothesen entwickelt worden. Bisher ist keines der TMVR-Verfahren CE-zertifiziert, und alle hier vorgestellten Katheterklappen werden im Rahmen von Zulassungsstudien evaluiert. Die jeweilige Therapieentscheidung erfolgt stets im Rahmen der interdisziplinären Diskussion im Herzteam in enger Zusammenarbeit zwischen Herzchirurgen und Kardiologen. Hier wird vor dem Hintergrund der Ätiologie der Klappenerkrankung, der vorbestehenden Komorbiditäten, des Patientenalters und der bestehenden Symptomatik ein individuelles Therapiekonzept festgelegt.

Schlüsselwörter

Herzklappenerkrankungen Mitralklappeninsuffizienz Herzinsuffizienz Transkatheter-Mitralklappenersatz Herzteam 

Transcatheter mitral valve replacement: current status

Abstract

After aortic valve stenosis, mitral regurgitation (MR) is the second most common valvular disease, particulary affecting older patients. Optimal medical treatment within the context of heart failure therapy is the favored first-line therapy for secondary MR. If symptoms persist despite optimal medical therapy, surgical or transcatheter mitral valve repair is indicated (recommendation class IIb). In contrast, surgical treatment is essential for patients with symptomatic primary MR and left-ventricular ejection fraction (LVEF) >30% and justifiable perioperative risk (repair preferred over replacement, recommendation class I); for high-risk patients, interventional transcatheter mitral valve repair (especially by “edge-to-edge-reconstruction”) is a viable option (recommendation class IIb).

Recently, transcatheter mitral valve replacement (TMVR) has come into focus as another attractive treatment option and is currently under intensive research. At first, the TMVR was used both for patients with symptomatic insufficiency or stenosis after biological mitral valve replacement (Bio-MKE) or after reconstruction as a “valve-in-valve” or “valve-in-ring” procedure. Therefore, transcatheter aortic valve prostheses were used.

In the past few years several dedicated TMVR prostheses were developed for the treatment of native MR. So far, no TMVR prosthesis is CE-certified. All of the following TMVR methods are under clinical evaluation in the scope of pivotal trials. The interdisciplinary heart team, consisting of experienced cardiologists and heart surgeons develops a patient-specific, individual treatment concept considering the particular MR etiology, pre-existing comorbidities, age, clinical symptoms, and status.

Keywords

Heart valve diseases Mitral valve insufficiency Heart failure Transcatheter mitral valve replacement Heart-Team 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Vogelhuber, M. Weber, J.-M. Sinning und G. Nickenig geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Lavall D, Hagendorff A, Schirmer SH et al (2018) Mitral valve interventions in heart failure. ESC Heart Failure 5:552–561CrossRefGoogle Scholar
  2. 2.
    Regueiro A, Granada JF, Dagenais F, Rodes-Cabau J (2017) Transcatheter mitral valve replacement: insights from early clinical experience and future challenges. J Am Coll Cardiol 69:2175–2192CrossRefGoogle Scholar
  3. 3.
    Mirabel M, Iung B, Baron G et al (2007) What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J 28:1358–1365CrossRefGoogle Scholar
  4. 4.
    Goel SS et al (2014) Prevalence and outcomes of unoperated patients with severe symptomatic mitral regurgitation and heart failure: comprehensive analysis to determine the potential role of MitraClip for this unmet need. J Am Coll Cardiol 63:185–186CrossRefGoogle Scholar
  5. 5.
    Baumgartner H et al (2017) 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2791CrossRefGoogle Scholar
  6. 6.
    Baldus S, Kuck KH, Rudolph V et al (2018) Interventionele Therapie von AV-Klappenerkrankungen – Fokus Mitralklappeninsuffizienz; Positionspapier der Deutschen Gesellschaft für Kardiologie. Kardiologe.  https://doi.org/10.1007/s12181-018-0232-y Google Scholar
  7. 7.
    Hirji SA et al (2017) Outcomes of surgical and transcatheter aortic valve replacement in the octogenarians-surgery still the gold standard? Ann Cardiothorac Surg 6:453–462CrossRefGoogle Scholar
  8. 8.
    Rostagno C (2019) Heart valve disease in elderly. World J Cardiol 11:71–83CrossRefGoogle Scholar
  9. 9.
    Badhwar V et al (2012) Longitudinal outcome of isolated mitral repair in older patients: results from 14,604 procedures performed from 1991 to 2007. Ann Thorac Surg 94:1870–1877 (discussion 1877–1879)CrossRefGoogle Scholar
  10. 10.
    Overtchouk P, Prendergast B, Modine T (2019) Why should we extend transcatheter aortic valve implantation to low-risk patients? A comprehensive review. Archives of Cardiovascular Diseases 112:354–362CrossRefGoogle Scholar
  11. 11.
    Bertrand PB, Mihos CG, Yucel E (2019) Mitral annular calcification and calcific mitral Stenosis: therapeutic challenges and considerations. Curr Treat Options Cardiovasc Med 21:19CrossRefGoogle Scholar
  12. 12.
    Paradis JM, Del Trigo M, Puri R, Rodes-Cabau J (2015) Transcatheter valve-in-valve and valve-in-ring for treating aortic and mitral surgical prosthetic dysfunction. J Am Coll Cardiol 66:2019–2037CrossRefGoogle Scholar
  13. 13.
    Urena M et al (2015) Late cardiac death in patients undergoing transcatheter aortic valve replacement: incidence and predictors of advanced heart failure and sudden cardiac death. J Am Coll Cardiol 65:437–448CrossRefGoogle Scholar
  14. 14.
    Frohlich GM et al (2015) Comparative survival after transapical, direct aortic, and subclavian transcatheter aortic valve implantation (data from the UK TAVI registry). Am J Cardiol 116:1555–1559CrossRefGoogle Scholar
  15. 15.
    Sondergaard L, De Backer O, Franzen OW et al (2015) First-in-human case of Transfemoral CardiAQ mitral valve implantation. Circ Cardiovasc Interv 8:e2135CrossRefGoogle Scholar
  16. 16.
    Sondergaard L (2016) CardiAQ-Edwards TMVR. PCR London Valves, London, UK (Paper)Google Scholar
  17. 17.
    De Backer O, Piazza N, Banai S et al (2014) Percutaneous transcatheter mitral valve replacement: an overview of devices in preclinical and early clinical evaluation. Circ Cardiovasc Interv 7:400–409CrossRefGoogle Scholar
  18. 18.
    Ussia GP, Quadri A, Cammalleri V et al (2016) Percutaneous transfemoral-transseptal implantation of a second-generation CardiAQ mitral valve bioprosthesis: first procedure description and 30-day follow-up. EuroIntervention 11:1126–1131CrossRefGoogle Scholar
  19. 19.
    Hermiller JB (2017) CardiAQ-edwards TMVR - device description, strengths and weaknesses, and update summary outcomes. Transcatheter Cardiovascular Therapeutics (TCT). (Paper)Google Scholar
  20. 20.
    Bapat V et al (2018) Early experience with new Transcatheter mitral valve replacement. J Am Coll Cardiol 71:12–21CrossRefGoogle Scholar
  21. 21.
    Bapat V (2017) Intrepid TMVR device. Transcatheter Cardiovascular Therapeutics (TCT), Denver, Chicago (Paper)Google Scholar
  22. 22.
    Meredith I (2016) Medtronic Intrepid TMVR. PCR London Valves, London, UK (Paper)Google Scholar
  23. 23.
    Meredith I, Bapat V, Morriss J et al (2016) Intrepid transcatheter mitral valve replacement system: technical and product description. EuroIntervention.  https://doi.org/10.4244/EIJV12SYA21 Google Scholar
  24. 24.
    Bapat V (2016) Intrepid taped case. Transcatheter Valve Therapeutics (TVT). A multidisciplinary heart team approach, Chicago, IL (Paper)Google Scholar
  25. 25.
    Bapat V (2016) Intrepid design and clinical trial update. Transcatheter Cardiovascular Therapeutics (TCT), Washington, DC (Paper)Google Scholar
  26. 26.
    Barbanti M et al (2017) Transcatheter mitral valve implantation using the highlife system. Jacc Cardiovasc Interv 10:1662–1670CrossRefGoogle Scholar
  27. 27.
    Lange R (2017) A two-component, self-centering TMR system. Transcatheter Cardiovascular Therapeutics (TCT), Washington, DC (Paper)Google Scholar
  28. 28.
    Lange R, Piazza N (2015) The Highlife transcatheter mitral valve implantation system. EuroIntervention.  https://doi.org/10.4244/EIJV11SWA25 Google Scholar
  29. 29.
    Piazza N (2017) Transcatheter mitral valve replacement: Highlife. Transcatheter Cardiovascular Therapeutics (TCT), Denver, Colorado (Paper)Google Scholar
  30. 30.
    Muller D (2017) Transcatheter mitral valve therapies—Tendyne program update. Transcatheter Cardiovascular Therapies (TCT), Denver, ChicagoGoogle Scholar
  31. 31.
    Badhwar V, Sorajja P, Duncan A et al (2019) Mitral regurgitation severity predicts one year therapeutic benefit of Tendyne Transcatheter mitral valve implantation. EuroIntervention.  https://doi.org/10.4244/EIJ-D-19-00333 Google Scholar
  32. 32.
    Muller DWM et al (2017) Transcatheter mitral valve replacement for patients with symptomatic mitral regurgitation: a global feasibility trial. J Am Coll Cardiol 69:381–391CrossRefGoogle Scholar
  33. 33.
    Niikura H, Gossl M, Sorajja P (2019) Transcatheter mitral valve replacement with Tendyne. Interv Cardiol Clin 8:295–300Google Scholar
  34. 34.
    Quarto C, Davies S, Duncan A et al (2016) Transcatheter mitral valve implantation: 30-day outcome of first-in-man experience with an apically tethered device. Innovations (Phila) 11:174–178CrossRefGoogle Scholar
  35. 35.
    Cheung A (2017) Established TMVR 2: TIARA; device description, strengths and weaknesses, and update summary outcomes. Transcatheter Cardiovascular Therapeutics (TCT), Denver, Colorado (Paper)Google Scholar
  36. 36.
    Cheung A (2018) Early experience of TIARA transcatheter mitral valve replacement system. Ann Cardiothorac Surg 7:787–791CrossRefGoogle Scholar
  37. 37.
    Cheung A, Webb J, Verheye S et al (2014) Short-term results of transapical transcatheter mitral valve implantation for mitral regurgitation. J Am Coll Cardiol 64:1814–1819CrossRefGoogle Scholar
  38. 38.
    Williams M (2017) Device description, strengths and weaknesses, and update summary outcomes: the caisson Transcatheter mitral valve replacement system; Transseptal approach. Transcatheter Cardiovascular Therapeutics (TCT), Denver, Colorado (Paper)Google Scholar
  39. 39.
    Williams M (2016) Caisson: design and clinical trial updates. Transcatheter Cardiovascular Therapeutics (TCT), Washington, DC (Paper)Google Scholar
  40. 40.
    Maisano F (2016) Valtech TMVR: Design highlights and clinical update. Transcatheter Valve Therapies (TVT): a multidisciplinary heart team approach, Chicago, ILGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • J. Vogelhuber
  • M. Weber
  • J.-M. Sinning
  • G. Nickenig
    • 1
    Email author
  1. 1.Medizinische Klinik und Poliklinik IIUniversitätsklinikum BonnBonnDeutschland

Personalised recommendations