pp 1–14 | Cite as

Preventive use of carvedilol for anthracycline-induced cardiotoxicity: a systematic review and meta-analysis of randomized controlled trials

  • T. Zhan
  • M. Daniyal
  • J. LiEmail author
  • Y. MaoEmail author
Review articles



Clinical or subclinical cardiotoxicity is a concern for cancer patients receiving anthracycline-based chemotherapy. Carvedilol is promising for preventing anthracycline-induced cardiotoxicity (AIC). This review appraised the preventive effects of carvedilol against AIC based on randomized controlled trials (RCTs).


The Cochrane Collaboration Central Register of Controlled Trials, PubMed, and Embase databases were searched from inception to March 27, 2018. RCTs using carvedilol for the prevention of AIC were selected. Risk of bias and methodological quality were assessed. Meta-analysis was conducted, when applicable, for the trial endpoints; otherwise the data were analyzed descriptively.


Nine RCTs comprising 717 patients were selected. The risk of bias was unclear and the methodological quality differed substantially. Data pooling of five eligible studies indicated no decreased mortality in patients receiving carvedilol (risk difference = −0.02, 95% CI: −0.07–0.04, p = 0.57, I2 = 44%). The impact on the incidence of left ventricular systolic dysfunction (LVSD) was inconsistently reported but meta-analysis was not applicable due to discordant LVSD definitions. Data pooling of eight studies and a subgroup analysis indicated a higher left ventricular ejection fraction (LVEF) with substantial heterogeneity in the carvedilol group (mean difference [MD] = 5.23, 95% CI: 2.20–8.27, p = 0.0007, I2 = 95%, and MD = 4.65, 95% CI: 0.67–8.64, p = 0.02, I2 = 90%, respectively). Further analysis of echocardiographic parameters and biomarkers showed weak evidence of improvement in diastolic function and troponin I level by carvedilol administration.


Preventive use of carvedilol in patients undergoing anthracycline-based chemotherapy may be associated with a reduced incidence of LVSD, higher LVEF value, better diastolic function, and lower troponin I level. RCTs with larger sample size and longer follow-up are needed to verify these findings.


Beta-adrenergic blocker Protective drugs Chemotherapy Cardiotoxic agents Anticancer drugs 

Präventive Anwendung von Carvedilol bei Anthrazyklin-induzierter Kardiotoxizität: systematische Übersicht und Metaanalyse randomisierter kontrollierter Studien



Eine klinische oder subklinische Kardiotoxizität ist von Belang für Tumorpatienten, die eine Chemotherapie auf Anthrazyklinbasis erhalten. Carvedilol ist vielversprechend bei der Prävention der Anthrazyklin-induzierten Kardiotoxizität (AIC). In der vorliegenden Übersichtsarbeit wurde die präventive Wirkung von Carvedilol gegen AIC anhand randomisierter kontrollierter Studien (RCT) beurteilt.


Die Datenbanken The Cochrane Collaboration Central Register of Controlled Trials, PubMed und Embase wurden von Beginn ihres Bestehens bis 27. März 2018 durchsucht. Ausgewählt wurden RCT mit Anwendung von Carvedilol für die Prävention der AIC. Das Risiko einer Verzerrung (Bias) sowie die methodische Qualität wurden eingeschätzt. Für die Studienendpunkte wurde, wenn möglich, eine Metaanalyse durchgeführt; andernfalls wurden die Daten deskriptiv ausgewertet.


Ausgewählt wurden 9 RCT mit 717 Patienten. Das Risiko einer Verzerrung war unklar, und die methodische Qualität unterschied sich wesentlich. Das Daten-Pooling von 5 geeigneten Studien ergab keine erhöhte Mortalität bei Patienten, die Carvedilol erhielten (Risikodifferenz = −0,02; 95 %-Konfidenzintervall, 95 %-KI: −0,07 bis 0,04; p = 0,57; I2 = 44 %). Auswirkungen auf die Inzidenz linksventrikulärer systolischer Dysfunktion (LVSD) wurden uneinheitlich angegeben, aber eine Metaanalyse war wegen abweichender LSVD-Definitionen nicht durchführbar. Das Daten-Pooling von 8 Studien und eine Subgruppenanalyse ergaben eine höhere linksventrikuläre Ejektionsfraktion (LVEF) bei substanzieller Heterogenität in der Carvedilolgruppe (mittlere Differenz, MD: 5,23; 95 %-KI: 2,20–8,27; p = 0,0007; I2 = 95 % bzw. MD = 4,65; 95 %-KI: 0,67–8,64; p = 0,02; I2 = 90 %). Die weitere Analyse echokardiographischer Parameter und Biomarker zeigte eine schwache Evidenz für die Verbesserung der diastolischen Funktion und des Troponin-I-Spiegels durch Gabe von Carvedilol.


Der präventive Einsatz von Carvedilol bei Patienten mit Chemotherapie auf Anthrazyklinbasis geht möglicherweise mit verminderter Inzidenz einer LVSD, höherem LVEF-Wert, besserer diastolischer Funktion und niedrigerem Troponin-I-Spiegel einher. Zur Bestätigung dieser Erkenntnisse sind RCT mit größerem Stichprobenumfang und längerem Follow-up erforderlich


Betablocker Protektive Substanzen Chemotherapie Kardiotoxische Agenzien Antineoplastische Substanzen 


Authors’ contributions

Dr. Yilin Mao proposed the idea of this work and participated in the literature survey; Dr. Jie Li designed the study protocol and participated in the literature survey, data extraction, and analysis; Dr. Muhammad Daniyal and Dr. Tao Zhan carried out the study protocol, and Dr. Tao Zhan wrote and revised the manuscript. All authors read and approved the final manuscript.


This study was funded by the Natural Science Foundation of Hunan Province (2016JJ4068) and the Education Department of Hunan Province (16A160).

Compliance with ethical guidelines

Conflict of interest

T. Zhan, M. Daniyal, J. Li, and Y. Mao declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Gradishar WJ, Anderson BO, Balassanian R et al (2017) NCCN guidelines insights: breast cancer, version 1.2017. J Natl Compr Canc Netw 15(4):433–451CrossRefGoogle Scholar
  2. 2.
    Ogura M, Ishida T, Tsukasaki K et al (2016) Effects of first-line chemotherapy on natural killer cells in adult T‑cell leukemia-lymphoma and peripheral T‑cell lymphoma. Cancer Chemother Pharmacol 78(1):199–207. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hoppe RT, Advani RH, Ai WZ et al (2017) Hodgkin lymphoma version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15(5):608–638CrossRefGoogle Scholar
  4. 4.
    Horwitz SM, Zelenetz AD, Gordon LI et al (2016) NCCN guidelines insights: non-Hodgkin’s lymphomas, version 3.2016. J Natl Compr Canc Netw 14(9):1067–1079CrossRefGoogle Scholar
  5. 5.
    Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97(11):2869–2879. CrossRefPubMedGoogle Scholar
  6. 6.
    Wang TJ, Evans JC, Benjamin EJ et al (2003) Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108(8):977–982. CrossRefPubMedGoogle Scholar
  7. 7.
    Kremer LC, van der Pal HJ, Offringa M et al (2002) Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann Oncol 13(6):819–829CrossRefGoogle Scholar
  8. 8.
    van Dalen EC, van der Pal HJ, Kok WE et al (2006) Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer 42(18):3191–3198. .2006.08.005CrossRefGoogle Scholar
  9. 9.
    Henriksen PA (2017) Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    van Dalen EC, Caron HN, Dickinson HO, Kremer LC (2011) Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. CrossRefPubMedGoogle Scholar
  11. 11.
    Yun S, Vincelette ND, Abraham I (2015) Cardioprotective role of beta-blockers and angiotensin antagonists in early-onset anthracyclines-induced cardiotoxicity in adult patients: a systematic review and meta-analysis. Postgrad Med J 91(1081):627–633. CrossRefPubMedGoogle Scholar
  12. 12.
    Cheng J, Kamiya K, Kodama I (2001) Carvedilol: molecular and cellular basis for its multifaceted therapeutic potential. Cardiovasc Drug Rev 19(2):152–171CrossRefGoogle Scholar
  13. 13.
    Spallarossa P, Garibaldi S, Altieri P et al (2004) Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 37(4):837–846. CrossRefPubMedGoogle Scholar
  14. 14.
    Chen YL, Chung SY, Chai HT et al (2015) Early administration of carvedilol protected against doxorubicin-induced cardiomyopathy. J Pharmacol Exp Ther 355(3):516–527. CrossRefPubMedGoogle Scholar
  15. 15.
    Arozal W, Watanabe K, Veeraveedu PT et al (2010) Protective effect of carvedilol on daunorubicin-induced cardiotoxicity and nephrotoxicity in rats. Toxicology 274(1–3):18–26. CrossRefPubMedGoogle Scholar
  16. 16.
    Cheuk DK, Sieswerda E, van Dalen EC et al (2016) Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst Rev. CrossRefPubMedGoogle Scholar
  17. 17.
    Shaikh F, Dupuis LL, Alexander S et al (2016) Cardioprotection and second malignant neoplasms associated with dexrazoxane in children receiving anthracycline chemotherapy: a systematic review and Meta-analysis. J Natl Cancer Inst 108(4). CrossRefPubMedGoogle Scholar
  18. 18.
    Abdel-Qadir H, Ong G, Fazelzad R et al (2017) Interventions for preventing cardiomyopathy due to anthracyclines: a Bayesian network meta-analysis. Ann Oncol 28(3):628–633. CrossRefPubMedGoogle Scholar
  19. 19.
    Page MJ, Moher D (2017) Evaluations of the uptake and impact of the preferred reporting items for systematic reviews and Meta-analyses (PRISMA) statement and extensions: a scoping review. Syst Rev 6(1):263. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Higgins JPGS (2011) Cochrane Handbook for systematic reviews of interventions version 5.1.0. [updated March 2011]. The Cochrane Collaboration (http:// Scholar
  21. 21.
    Olivo SA, Macedo LG, Gadotti IC et al (2008) Scales to assess the quality of randomized controlled trials: a systematic review. Phys Ther 88(2):156–175. CrossRefPubMedGoogle Scholar
  22. 22.
    Jadad AR, Moore RA, Carroll D et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12CrossRefGoogle Scholar
  23. 23.
    Nabati M, Janbabai G, Baghyari S et al (2017) Cardioprotective effects of carvedilol in inhibiting doxorubicin-induced cardiotoxicity. J Cardiovasc Pharmacol 69(5):279–285. CrossRefPubMedGoogle Scholar
  24. 24.
    Armenian SH, Hudson MM, Chen MH et al (2016) Rationale and design of the Children’s Oncology Group (COG) study ALTE1621: a randomized, placebo-controlled trial to determine if low-dose carvedilol can prevent anthracycline-related left ventricular remodeling in childhood cancer survivors at high risk for developing heart failure. BMC Cardiovasc Disord 16(1):187. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cardinale D, Colombo A, Lamantia G et al (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55(3):213–220. CrossRefPubMedGoogle Scholar
  26. 26.
    Bosch X, Rovira M, Sitges M et al (2013) Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol 61(23):2355–2362. CrossRefPubMedGoogle Scholar
  27. 27.
    Elitok A, Oz F, Cizgici AY et al (2014) Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: A prospective randomized controlled study with six-month follow-up. Cardiol J 21(5):509–515. CrossRefPubMedGoogle Scholar
  28. 28.
    El-Shitany NA, Tolba OA, El-Shanshory MR, El-Hawary EE (2012) Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail 18(8):607–613. CrossRefPubMedGoogle Scholar
  29. 29.
    Jhorawat R, Kumari S, Varma SC et al (2016) Preventive role of carvedilol in adriamycin-induced cardiomyopathy. Indian J Med Res 144(5):725–729. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kalay N, Basar E, Ozdogru I et al (2006) Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 48(11):2258–2262. CrossRefPubMedGoogle Scholar
  31. 31.
    Liu L, Liu ZZ, Liu YY et al (2013) Preventive effect of low-dose carvedilol combined with candesartan on the cardiotoxicity of anthracycline drugs in the adjuvant chemotherapy of breast cancer. Zhonghua Zhong Liu Za Zhi 35(12):936–940PubMedGoogle Scholar
  32. 32.
    Tashakori Beheshti A, Mostafavi Toroghi H, Hosseini G et al (2016) Carvedilol administration can prevent doxorubicin-induced cardiotoxicity: a double-blind randomized trial. Cardiology 134(1):47–53. CrossRefPubMedGoogle Scholar
  33. 33.
    Avila MS, Ayub-Ferreira SM, de Barros Wanderley JMR et al (2018) Carvedilol for prevention of chemotherapy related cardiotoxicity. J Am Coll Cardiol. CrossRefPubMedGoogle Scholar
  34. 34.
    Noutsias M, Maisch B (2011) Treatment of cardiovascular diseases in cancer patients. Herz 36(4):340–345. CrossRefPubMedGoogle Scholar
  35. 35.
    Suter TM, Ewer MS (2013) Cancer drugs and the heart: importance and management. Eur Heart J 34(15):1102–1111. CrossRefPubMedGoogle Scholar
  36. 36.
    Johnson CB, Sulpher J, Stadnick E (2015) Evaluation, prevention and management of cancer therapy-induced cardiotoxicity: a contemporary approach for clinicians. Curr Opin Cardiol. CrossRefPubMedGoogle Scholar
  37. 37.
    Armstrong GT, Chen Y, Yasui Y et al (2016) Reduction in late mortality among 5‑year survivors of childhood cancer. N Engl J Med 374(9):833–842. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Patnaik JL, Byers T, DiGuiseppi C et al (2011) Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study. Breast Cancer Res 13(3):R64. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Murtagh G, Lyons T, O’Connell E et al (2016) Late cardiac effects of chemotherapy in breast cancer survivors treated with adjuvant doxorubicin: 10-year follow-up. Breast Cancer Res Treat 156(3):501–506. CrossRefPubMedGoogle Scholar
  40. 40.
    Cohen-Solal A, Jacobson AF, Pina IL (2017) Beta blocker dose and markers of sympathetic activation in heart failure patients: interrelationships and prognostic significance. ESC Heart Fail 4(4):499–506. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Inampudi C, Alvarez P, Asleh R, Briasoulis A (2018) Therapeutic approach to patients with heart failure with reduced ejection fraction and end-stage renal disease. Curr Cardiol Rev. CrossRefPubMedGoogle Scholar
  42. 42.
    Guang-Yi C, Li-Sha G, Yue-Chun L (2018) Role of heart rate reduction in the management of myocarditis. Curr Pharm Des. CrossRefPubMedGoogle Scholar
  43. 43.
    Moher D, Pham B, Jones A et al (1998) Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? Lancet 352(9128):609–613. CrossRefPubMedGoogle Scholar
  44. 44.
    Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 27(9):911–939. CrossRefPubMedGoogle Scholar
  45. 45.
    Thavendiranathan P, Grant AD, Negishi T et al (2013) Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol 61(1):77–84. CrossRefPubMedGoogle Scholar
  46. 46.
    Rea D, Coppola C, Barbieri A et al (2016) Strain analysis in the assessment of a mouse model of cardiotoxicity due to chemotherapy: sample for preclinical research. In Vivo 30(3):279–290PubMedGoogle Scholar
  47. 47.
    Migrino RQ, Aggarwal D, Konorev E et al (2008) Early detection of doxorubicin cardiomyopathy using two-dimensional strain echocardiography. Ultrasound Med Biol 34(2):208–214. CrossRefPubMedGoogle Scholar
  48. 48.
    Jurcut R, Wildiers H, Ganame J et al (2008) Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr 21(12):1283–1289. CrossRefPubMedGoogle Scholar
  49. 49.
    Stoodley PW, Richards DA, Hui R et al (2011) Two-dimensional myocardial strain imaging detects changes in left ventricular systolic function immediately after anthracycline chemotherapy. Eur J Echocardiogr 12(12):945–952. CrossRefPubMedGoogle Scholar
  50. 50.
    Nagueh SF, Appleton CP, Gillebert TC et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10(2):165–193. CrossRefPubMedGoogle Scholar
  51. 51.
    Di Lisi D, Bonura F, Macaione F et al (2011) Chemotherapy-induced cardiotoxicity: role of the tissue Doppler in the early diagnosis of left ventricular dysfunction. Anticancer Drugs 22(5):468–472. CrossRefPubMedGoogle Scholar
  52. 52.
    Danesi R, Del Tacca M, Soldani G (1986) Measurement of the S alpha T segment as the most reliable electrocardiogram parameter for the assessment of adriamycin-induced cardiotoxicity in the rat. J Pharmacol Methods 16(3):251–259CrossRefGoogle Scholar
  53. 53.
    Jensen RA, Acton EM, Peters JH (1984) Doxorubicin cardiotoxicity in the rat: comparison of electrocardiogram, transmembrane potential, and structural effects. J Cardiovasc Pharmacol 6(1):186–200CrossRefGoogle Scholar
  54. 54.
    Skrypnyk I, Maslova G, Lymanets T, Gusachenko I (2017) L‑arginine is an effective medication for prevention of endothelial dysfunction, a predictor of anthracycline cardiotoxicity in patients with acute leukemia. Exp Oncol 39(4):308–311PubMedGoogle Scholar
  55. 55.
    Shimomura Y, Baba R, Watanabe A et al (2011) Assessment of late cardiotoxicity of pirarubicin (THP) in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 57(3):461–466. CrossRefPubMedGoogle Scholar
  56. 56.
    Horacek JM, Jakl M, Horackova J et al (2009) Assessment of anthracycline-induced cardiotoxicity with electrocardiography. Exp Oncol 31(2):115–117PubMedGoogle Scholar
  57. 57.
    Galetta F, Franzoni F, Cervetti G et al (2005) Effect of epirubicin-based chemotherapy and dexrazoxane supplementation on QT dispersion in non-Hodgkin lymphoma patients. Biomed Pharmacother 59(10):541–544. CrossRefPubMedGoogle Scholar
  58. 58.
    Drafts BC, Twomley KM, D’Agostino R Jr. et al (2013) Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging 6(8):877–885. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sawaya H, Sebag IA, Plana JC et al (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5(5):596–603. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jones M, O’Gorman P, Kelly C et al (2017) High-sensitive cardiac troponin-I facilitates timely detection of subclinical anthracycline-mediated cardiac injury. Ann Clin Biochem 54(1):149–157. CrossRefPubMedGoogle Scholar
  61. 61.
    Wang YD, Chen SX, Ren LQ (2016) Serum B‑type natriuretic peptide levels as a marker for anthracycline-induced cardiotoxicity. Oncol Lett 11(5):3483–3492. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Krum H (2004) Tolerability of carvedilol in heart failure: clinical trials experience. Am J Cardiol 93(9a):58b–63b. CrossRefPubMedGoogle Scholar
  63. 63.
    Kitakaze M, Sarai N, Ando H et al (2012) Safety and tolerability of once-daily controlled-release carvedilol 10–80 mg in Japanese patients with chronic heart failure. Circ J 76(3):668–674CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Hunan University of Chinese MedicineChangshaChina
  2. 2.Department of Integrated TCM and Western MedicineThe First Hospital of ChangshaChangshaChina
  3. 3.TCM and Ethnomedicine Innovation & Development Laboratory, School of PharmacyHunan University of Chinese MedicineChangshaChina
  4. 4.Department of Geriatric Medicine, The Second Affiliated HospitalHunan University of Chinese MedicineChangshaChina

Personalised recommendations