Advertisement

Herz

, Volume 44, Issue 1, pp 35–39 | Cite as

Koronare Restenose

  • R. J. ZotzEmail author
  • U. Dietz
  • S. Lindemann
  • S. Genth-Zotz
Schwerpunkt
  • 98 Downloads

Zusammenfassung

Die koronare Restenose ist eine Antwort der Arterienwand auf eine mechanische Schädigung durch Ballonangioplastie, BMS(„bare-metal stent“)-Implantation oder Rotablation durch Wiederverengung. Sie hat große klinische und prognostische Bedeutung und tritt etwa bei 30 % der nichtbeschichteten und bei rund 10 % der beschichteten koronaren Stents auf. Der Wundheilungsprozess, der einer Restenose vorangeht, beinhaltet Entzündungsreaktionen, zelluläre Proliferation und einen Umbau-Remodellierungs-Prozess, bei dem die Proteinsynthese in der extrazellulären Matrix (ECM) angeworfen wird. Die Entzündungsreaktion aktiviert Plättchen, Leukozyten und Monozyten und stimuliert glatte Muskelzellen. Die auf DES („drug-eluting stents“) verwendeten Medikamente (Rapamycin, Paclitaxel, Sirolimus, Evarolimus, Zotarolimus) unterdrücken die Zellteilung und wirken zytotoxisch, und nur diese beeinflussen die Restenose nachhaltig. Ob sie eine Rolle bei der Neoatherosklerose spielen, muss geklärt werden. Bei der DES-Implantation ist der Mechanismus der Restenose uneinheitlich und mit der Einlagerung von T‑Lymphozyten und Fibrin assoziiert. Risikofaktoren für die Entwicklung einer Restenose beinhalten mechanische Faktoren wie inkorrekte Apposition und Expansion des Stents, Inflammation, Diabetes mellitus, genetische Faktoren, Z. n. Bypass-Operation sowie Stentlänge und -diameter. Die Restenoserate ist geringer mit DES und differenziert zwischen den DES zu betrachten. DES der neuesten Generation und „drug-coated balloons“ (DCB) ergeben die besten klinischen und angiographischen Resultate bei In-Stent-Restenosen in randomisierten Studien. BMS und ältere DES sind hier zu vermeiden. Weitere randomisierte Studien sind erforderlich.

Schlüsselwörter

Endothel Angioplastie Bare-metal-Stents Medikamentenfreisetzende Stents Neoatherosklerose 

Coronary restenosis

Abstract

Coronary restenosis is the answer of the arterial wall to a mechanical violation through balloon angioplasty, bare-metal (BM) stent implantation or rotational atherectomy through repeated narrowing. It has great clinical and prognostic relevance and occurs in approximately 30% of non-coated stents and in 10% of coated coronary stents. The wound healing process that precedes restenosis includes inflammatory reactions, cellular proliferation and remodeling of the arterial wall, where protein synthesis of the extracellular matrix is initiated. The inflammatory reaction activates platelets, leucocytes and monocytes and stimulates smooth muscle cells. The medications on the drug-eluting stents (rapamycin, paclitaxel, sirolimus, evarolimus and zotarolimus) inhibit cell division, are cytotoxic and only these sustainably influence restenosis. Whether they play a role in neoatherosclerosis needs to be determined. The mechanism of restenosis with implantation of drug-eluting stents is heterogeneous and associated with the deposition of T‑lymphocytes and fibrin. Risk factors for the development of restenosis include mechanical factors, such as incorrect apposition and expansion of stents, inflammation, diabetes mellitus, genetic factors, bypass operations, stent length and stent diameter. The restenosis rate is lower with drug-eluting stents and must be considered differently between the drug-eluting stents. Drug-eluting stents of the latest generation and drug-coated balloons (DCB) showed the best clinical and angiographic results for in-stent restenosis in randomized trials. The BM and older first-generation drug-eluting stents should be avoided. Further randomized studies are needed.

Keywords

Endothelium Angioplasty Bare-metal stents Drug-eluting stents Neoatherosclerosis  

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

R.J. Zotz, U. Dietz, S. Lindemann und S. Genth-Zotz geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Dotter CT, Judkins MP (1964) Transluminal treatment of arteriosclerotic obstruction. Description of a new technic and a preliminary report of its application. Circulation 30:654–670CrossRefGoogle Scholar
  2. 2.
    Gruntzig A (1978) Transluminal dilatation of coronary-artery stenosis. Lancet 1(8058):263CrossRefGoogle Scholar
  3. 3.
    Meyer J et al (1981) Treatment of unstable angina pectoris with percutaneous transluminal coronary angioplasty (PTCA). Cathet Cardiovasc Diagn 7(4):361–371CrossRefGoogle Scholar
  4. 4.
    Meyer J et al (1982) Successful treatment of acute myocardial infarction shock by combined percutaneous transluminal coronary recanalization (PTCR) and percutaneous transluminal coronary angioplasty (PTCA). Am Heart J 103(1):132–134CrossRefGoogle Scholar
  5. 5.
    Nabel EG, Braunwald E (2012) A tale of coronary artery disease and myocardial infarction. N Engl J Med 366(1):54–63CrossRefGoogle Scholar
  6. 6.
    Dietz U et al (2006) Shortening the stent length reduces restenosis with bare metal stents: matched pair comparison of short stenting and conventional stenting. Heart 92(1):80–84CrossRefGoogle Scholar
  7. 7.
    Köster R et al (2000) Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet 356(9245):1895–1897CrossRefGoogle Scholar
  8. 8.
    Fujii K et al (2004) Contribution of stent underexpansion to recurrence after sirolimus-eluting stent implantation for in-stent restenosis. Circulation 109(9):1085–1088CrossRefGoogle Scholar
  9. 9.
    Nef HM et al (2017) Empfehlungen zur Anwendung von intravaskulärer Bildgebung (optische Kohärenztomographie). Kardiologe 11(11):300–308CrossRefGoogle Scholar
  10. 10.
    Mehran R et al (1999) Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome. Circulation 100(18):1872–1878CrossRefGoogle Scholar
  11. 11.
    Alfonso F et al (2006) Value of the American College of Cardiology/American Heart Association angiographic classification of coronary lesion morphology in patients with in-stent restenosis. Insights from the Restenosis Intra-stent Balloon angioplasty versus elective Stenting (RIBS) randomized trial. Am Heart J 151(3):681.e1–681.e9CrossRefGoogle Scholar
  12. 12.
    Moustapha A et al (2002) Abciximab administration and clinical outcomes after percutaneous intervention for in-stent restenosis. Catheter Cardiovasc Interv 56(2):184–187CrossRefGoogle Scholar
  13. 13.
    Kufner S et al (2009) Long-term risk of adverse outcomes and new malignancies in patients treated with oral sirolimus for prevention of restenosis. JACC Cardiovasc Interv 2(11):1142–1148CrossRefGoogle Scholar
  14. 14.
    Alfonso F et al (2009) Treatment of patients with in-stent restenosis. EuroIntervention 5(Suppl D):D70–D78PubMedGoogle Scholar
  15. 15.
    Windecker S et al (2014) 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35(37):2541–2619CrossRefGoogle Scholar
  16. 16.
    Alfonso F et al (2014) Current treatment of in-stent restenosis. J Am Coll Cardiol 63(24):2659–2673CrossRefGoogle Scholar
  17. 17.
    Alfonso F et al (2005) Implications of the „watermelon seeding“ phenomenon during coronary interventions for in-stent restenosis. Catheter Cardiovasc Interv 66(4):521–527CrossRefGoogle Scholar
  18. 18.
    Byrne RA et al (2013) Paclitaxel-eluting balloons, paclitaxel-eluting stents, and balloon angioplasty in patients with restenosis after implantation of a drug-eluting stent (ISAR-DESIRE 3): a randomised, open-label trial. Lancet 381(9865):461–467CrossRefGoogle Scholar
  19. 19.
    Adamian M et al (2001) Cutting balloon angioplasty for the treatment of in-stent restenosis: a matched comparison with rotational atherectomy, additional stent implantation and balloon angioplasty. J Am Coll Cardiol 38(3):672–679CrossRefGoogle Scholar
  20. 20.
    Albiero R et al (2004) Cutting balloon versus conventional balloon angioplasty for the treatment of in-stent restenosis: results of the restenosis cutting balloon evaluation trial (RESCUT). J Am Coll Cardiol 43(6):943–949CrossRefGoogle Scholar
  21. 21.
    Kufner S et al (2017) Neointimal modification with scoring balloon and efficacy of drug-coated balloon therapy in patients with restenosis in drug-eluting coronary stents: a randomized controlled trial. JACC Cardiovasc Interv 10(13):1332–1340CrossRefGoogle Scholar
  22. 22.
    Mehran R et al (2000) Treatment of in-stent restenosis with excimer laser coronary angioplasty versus rotational atherectomy: comparative mechanisms and results. Circulation 101(21):2484–2489CrossRefGoogle Scholar
  23. 23.
    vom Dahl J et al (2002) Rotational atherectomy does not reduce recurrent in-stent restenosis: results of the angioplasty versus rotational atherectomy for treatment of diffuse in-stent restenosis trial (ARTIST). Circulation 105(5):583–588CrossRefGoogle Scholar
  24. 24.
    Holmes DR Jr et al (2006) Sirolimus-eluting stents vs vascular brachytherapy for in-stent restenosis within bare-metal stents: the SISR randomized trial. JAMA 295(11):1264–1273CrossRefGoogle Scholar
  25. 25.
    Leon MB et al (2001) Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N Engl J Med 344(4):250–256CrossRefGoogle Scholar
  26. 26.
    Alfonso F et al (2003) A randomized comparison of repeat stenting with balloon angioplasty in patients with in-stent restenosis. J Am Coll Cardiol 42(5):796–805CrossRefGoogle Scholar
  27. 27.
    Kastrati A et al (2005) Sirolimus-eluting stent or paclitaxel-eluting stent vs balloon angioplasty for prevention of recurrences in patients with coronary in-stent restenosis: a randomized controlled trial. JAMA 293(2):165–171CrossRefGoogle Scholar
  28. 28.
    Alfonso F et al (2008) Long-term clinical benefit of sirolimus-eluting stents in patients with in-stent restenosis results of the RIBS-II (Restenosis Intra-stent: Balloon angioplasty vs. elective sirolimus-eluting Stenting) study. J Am Coll Cardiol 52(20):1621–1627CrossRefGoogle Scholar
  29. 29.
    Byrne RA et al (2013) Differential relative efficacy between drug-eluting stents in patients with bare metal and drug-eluting stent restenosis; evidence in support of drug resistance: insights from the ISAR-DESIRE and ISAR-DESIRE 2 trials. EuroIntervention 9(7):797–802CrossRefGoogle Scholar
  30. 30.
    Alfonso F et al (2012) Implantation of a drug-eluting stent with a different drug (switch strategy) in patients with drug-eluting stent restenosis. Results from a prospective multicenter study (RIBS III [Restenosis Intra-stent: Balloon angioplasty versus drug-eluting Stent]). JACC Cardiovasc Interv 5(7):728–737CrossRefGoogle Scholar
  31. 31.
    Jamshidi P et al (2016) A novel approach to treat in-stent restenosis: 6‑ and 12-month results using the everolimus-eluting bioresorbable vascular scaffold. EuroIntervention 11(13):1479–1486CrossRefGoogle Scholar
  32. 32.
    Scheller B et al (2006) Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N Engl J Med 355(20):2113–2124CrossRefGoogle Scholar
  33. 33.
    Unverdorben M et al (2009) Paclitaxel-coated balloon catheter versus paclitaxel-coated stent for the treatment of coronary in-stent restenosis. Circulation 119(23):2986–2994CrossRefGoogle Scholar
  34. 34.
    Alfonso F et al (2014) A randomized comparison of drug-eluting balloon versus everolimus-eluting stent in patients with bare-metal stent-in-stent restenosis: the RIBS V Clinical Trial (Restenosis Intra-stent of Bare metal Stents: paclitaxel-eluting balloon vs. everolimus-eluting stent). J Am Coll Cardiol 63(14):1378–1386CrossRefGoogle Scholar
  35. 35.
    Habara S et al (2011) Effectiveness of paclitaxel-eluting balloon catheter in patients with sirolimus-eluting stent restenosis. JACC Cardiovasc Interv 4(2):149–154CrossRefGoogle Scholar
  36. 36.
    Rittger H et al (2012) A randomized, multicenter, single-blinded trial comparing paclitaxel-coated balloon angioplasty with plain balloon angioplasty in drug-eluting stent restenosis: the PEPCAD-DES study. J Am Coll Cardiol 59(15):1377–1382CrossRefGoogle Scholar
  37. 37.
    Xu B et al (2014) A prospective, multicenter, randomized trial of paclitaxel-coated balloon versus paclitaxel-eluting stent for the treatment of drug-eluting stent in-stent restenosis: results from the PEPCAD China ISR trial. JACC Cardiovasc Interv 7(2):204–211CrossRefGoogle Scholar
  38. 38.
    Alfonso F et al (2015) A prospective randomized trial of drug-eluting balloons versus everolimus-eluting stents in patients with in-stent restenosis of drug-eluting stents: the RIBS IV randomized clinical trial. J Am Coll Cardiol 66(1):23–33CrossRefGoogle Scholar
  39. 39.
    Her AY, Shin ES (2018) Current management of in-stent restenosis. Korean Circ J 48(5):337–349CrossRefGoogle Scholar
  40. 40.
    Siontis GC et al (2015) Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. Lancet 386(9994):655–664CrossRefGoogle Scholar
  41. 41.
    Giacoppo D et al (2015) Treatment strategies for coronary in-stent restenosis: systematic review and hierarchical Bayesian network meta-analysis of 24 randomised trials and 4880 patients. BMJ 351:h5392CrossRefGoogle Scholar
  42. 42.
    Imaizumi S et al (2016) Association between cholesterol efflux capacity and coronary restenosis after successful stent implantation. Heart Vessels 31(8):1257–1265CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • R. J. Zotz
    • 1
    Email author
  • U. Dietz
    • 2
  • S. Lindemann
    • 3
  • S. Genth-Zotz
    • 4
  1. 1.Marienhaus Klinikum EifelBitburgDeutschland
  2. 2.DKD Helios Klinik WiesbadenWiesbadenDeutschland
  3. 3.Helios Klinikum WarburgWarburgDeutschland
  4. 4.Katholisches Klinikum MainzMainzDeutschland

Personalised recommendations