Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Diagnostic value of novel biomarkers for heart failure

A meta-analysis

Diagnostischer Wert neuartiger Biomarker für Herzinsuffizienz

Eine Metaanalyse

Abstract

Background

The present meta-analysis examined the diagnostic value of novel biomarkers for heart failure (HF), including copeptin, galectin-3, hs-cTnT, MR-proANP, MR-proADM, and ST2.

Methods

English (EMBASE, Cochrane, and PubMed) and Chinese (Wanfang data, CNKI, SinoMed) databases were searched to identify suitable studies that were published before 1 December 2016. Data were extracted using standard forms. Pooled diagnostic statistics were calculated using DerSimonian–Laird random-effects models.

Results

The analysis comprised 45 studies. The pooled sensitivities of all biomarkers were 0.80–0.86, along with pooled specificities of 0.60–0.82, positive predictive values (PPVs) of 0.52–0.80, and negative predictive values (NPVs) of 0.70–0.87. Among them, hs-cTnT had the highest sensitivity (0.86 [95% CI: 0.84–0.88]), specificity (0.82 [95% CI: 0.79–0.84]), PPV (0.80 [95% CI: 0.77–0.83]), and NPV (0.87 [95% CI: 0.85–0.89]), while MR-proADM had the lowest sensitivity (0.80 [95% CI: 0.75–0.84]), specificity (0.60 [95% CI: 0.56–0.64]), and PPV (0.52 [95% CI: 0.47–0.56]). Copeptin had the lowest NPV (0.70 [95% CI: 0.66–0.74]). The positive likelihood ratio (LR+) of all biomarkers ranged from 1.97 to 3.21, and the negative likelihood ratio (LR−) from 0.20 to 0.36. MR-proADM had the lowest LR+ and highest LR−; galectin-3 had the highest LR+ and MR-proANP had the lowest LR−. The area under the curve (AUC) was as low as 0.68 for MR-proADM, while AUCs for the other biomarkers ranged from 0.83 to 0.89.

Conclusion

The overall diagnostic accuracy of copeptin, galectin-3, hs-cTnT, MR-proANP, and ST2 was relatively good. MR-proADM had a poor capacity to confirm or exclude HF. Improving the diagnostic accuracy of HF by a combination of biomarkers could be considered in the future.

Zusammenfassung

Hintergrund

In der vorliegenden Metaanalyse wurde der diagnostische Wert neuartiger Biomarker für die Herzinsuffizienz, einschließlich Copeptin, Galectin-3, hs-cTnT, MR-proANP, MR-proADM und ST2, untersucht.

Methoden

Englischsprachige (EMBASE, Cochrane und PubMed) sowie chinesische (Wanfang Data, CNKI, SinoMed) Datenbanken wurden nach geeigneten Studien durchsucht, die vor dem 1. Dezember 2016 publiziert worden waren. Die Daten wurden unter Verwendung von Standardformularen ausgewertet. Zusammengefasste diagnostische Statistikparameter wurden unter Einsatz von DerSimonian-Laird-Random-Effects-Modellen berechnet.

Ergebnisse

Die Auswertung umfasste 45 Studien. Die gepoolte Sensitivität für alle Biomarker betrug 0,80–0,86, dabei lag die gepoolte Spezifität bei 0,60–0,82, der positive prädikitve Wert (PPV) bei 0,52–0,80 und der negative prädiktive Wert (NPV) bei 0,70–0,87. Davon wies hs-cTnT die höchsten Werte für Sensitivität (0,86; 95%-Konfidenzintervall, 95%-KI: 0,84–0,88), Spezifität (0,82; 95%-KI: 0,79–0,84), PPV (0,80; 95%-KI: 0,77–0,83) und NPV auf (0,87; 95%-KI: 0,85–0,89), während MR-proADM die niedrigsten Werte für Sensitivität (0,80; 95%-KI: 0,75–0,84), Spezifität (0,60; 95%-KI: 0,56–0,64) und PPV besaß (0,52; 95%-KI: 0,47–0,56). Copeptin hatte den niedrigsten NPV (0,70; 95%-KI: 0,66–0,74). Das positive Wahrscheinlichkeitsverhältnis („likelihood ratio“, LR+) aller Biomarker lag zwischen 1,97 und 3,21, das negative Wahrscheinlichkeitsverhältnis (LR−) zwischen 0,20 und 0,36. MR-proADM wies das niedrigste LR+ und das höchste LR− auf; Galectin-3 das höchste LR+ und MR-proANP das niedrigste LR−. Die Fläche unter der Kurve („area under the curve“, AUC) betrug nur 0,68 für MR-proADM, während die AUC für die anderen Biomarker zwischen 0,83 und 0,89 lag.

Schlussfolgerung

Die diagnostische Gesamtgenauigkeit von Copeptin, Galectin-3, hs-cTnT, MR-proANP und ST2 war relativ gut. Die Eignung von MR-proADM zur Bestätigung oder zum Ausschluss einer Herzinsuffizienz war gering. Eine Perspektive für die Zukunft wäre die Verbesserung der diagnostischen Genauigkeit in Bezug auf die Herzinsuffizienz durch eine Kombination von Biomarkern.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Yancy CW, Jessup M, Bozkurt B et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):1810–1852

  2. 2.

    McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14(8):803–869

  3. 3.

    Adams KF Jr, Fonarow GC, Emerman CL et al (2005) Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 149(2):209–216

  4. 4.

    Fonarow GC, Abraham WT, Albert NM et al (2004) Organized program to initiate lifesaving treatment in hospitalized patients with heart failure (OPTIMIZE-HF): rationale and design. Am Heart J 148(1):43–51

  5. 5.

    Ray P, Birolleau S, Lefort Y et al (2006) Acute respiratory failure in the elderly: etiology, emergency diagnosis and prognosis. Crit Care 10(3):R82. https://doi.org/10.1186/cc4926

  6. 6.

    Delerme S, Ray P (2008) Acute respiratory failure in the elderly: diagnosis and prognosis. Age Ageing 37(3):251–257

  7. 7.

    Wuerz RC, Meador SA (1992) Effects of prehospital medications on mortality and length of stay in congestive heart failure. Ann Emerg Med 21(6):669–674

  8. 8.

    Bales AC, Sorrentino MJ (1997) Causes of congestive heart failure. Prompt diagnosis may affect prognosis. Postgrad Med 101(1):44–49, 54–56

  9. 9.

    Januzzi JL Jr, Camargo CA, Anwaruddin S et al (2005) The N‑terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol 95(8):948–954

  10. 10.

    Bayés-Genís A, Santaló-Bel M, Zapico-Muñiz E et al (2004) N‑terminal probrain natriuretic peptide (NT-proBNP) in the emergency diagnosis and in-hospital monitoring of patients with dyspnoea and ventricular dysfunction. Eur J Heart Fail 6(3):301–308

  11. 11.

    McCullough PA, Nowak RM, McCord J et al (2002) B‑type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation 106(4):416–422

  12. 12.

    Wang CS, FitzGerald JM, Schulzer M et al (2005) Does this dyspneic patient in the emergency department have congestive heart failure? JAMA 294(15):1944–1956

  13. 13.

    Ghosh N, Haddad H (2011) Atrial natriuretic peptides in heart failure: pathophysiological significance, diagnostic and prognostic value. Can J Physiol Pharmacol 89(8):587–591

  14. 14.

    Martindale JL, Wakai A, Collins SP et al (2016) Diagnosing acute heart failure in the emergency department: a systematic review and meta-analysis. Acad Emerg Med 23(3):223–242

  15. 15.

    Maisel AS, Peacock WF, Shah KS et al (2011) Acoustic cardiography S3 detection use in problematic subgroups and B‑type natriuretic peptide “gray zone”: secondary results from the heart failure and Audicor technology for rapid diagnosis and initial treatment multinational investigation. Am J Emerg Med 29(8):924–931

  16. 16.

    Dieplinger B, Gegenhuber A, Haltmayer M et al (2009) Evaluation of novel biomarkers for the diagnosis of acute destabilised heart failure in patients with shortness of breath. Heart 95(18):1508–1513

  17. 17.

    Qi X, Ding KQ (2011) Changes of the serum NT-proBNP concentration and the serum Copeptin concentration in patient of heart failure. http://www.365yixue.com, W060669, last access: 30 July 2011

  18. 18.

    Yan F, Ren LQ (2012) Evaluating the value of Copeptin in diagnosis of chronic heart failure[D]. Southeast University, Nanjing, pp 1–43

  19. 19.

    Mason JM, Hancock HC, Close H et al (2013) Utility of biomarkers in the differential diagnosis of heart failure in older people: findings from the heart failure in care homes (HFinCH) diagnostic accuracy study. PLoS ONE 8(1):e53560

  20. 20.

    Wang LH, Xia F, Chen QS et al (2013) Clinical value of Copeptin for enzyme-linked immunosorbent assay of quantitative detection in diagnosis of heart failure. J Mod Lab Med 28(6):55–62

  21. 21.

    Sun QW, Chen HQ (2013) The serum Copeptin measurement value in the diagnosis and prognosis of patients with heart failure. Chin Circul J 28(7):51–514

  22. 22.

    Kim JS, Yang JW, Chai MH et al (2015) Copeptin in hemodialysis patients with left ventricular dysfunction. Yonsei Med J 56(4):976–980

  23. 23.

    van Kimmenade RR, Januzzi JL Jr, Ellinor PT et al (2006) Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol 48(6):1217–1224

  24. 24.

    Zhao Y, Sun YM (2012) The observation between Galectin-3 and coronary heart disease with heart failure[D]. TianJin medical university, TianJin, pp 1–31

  25. 25.

    Chen K, Jiang RJ, Wang CQ et al (2013) Predictive value of plasma galectin-3 in patients with chronic heart failure. Eur Rev Med Pharmacol Sci 17(8):1005–1011

  26. 26.

    Geng FQ, Yang P (2014) Diagnostic and predictive value of serum Galectin-3 in patients with chronic heart failure[D]. JiLin university, JiLin, pp 1–21

  27. 27.

    Yin QS, Shi B, Dong L et al (2014) Comparative study of galectin-3 and B‑type natriuretic peptide as biomarkers for the diagnosis of heart failure. J Geriatr Cardiol 11(1):79–82

  28. 28.

    Shi B, Xue DW (2015) Diagnostic and predictive value of plasma Galectin-3 in elderly patients with heart failure with reserved ejection fraction. Chin J Geriatr Heart Brain Vessel Dis 17(9):980–982

  29. 29.

    Polat V, Bozcali E, Uygun T et al (2016) Diagnostic significance of serum galectin-3 levels in heart failure with preserved ejection fraction. Acta Cardiol 71(2):191–197

  30. 30.

    Zhang X, Wan Y, Chata R et al (2016) A pilot study to demonstrate diagnostic potential of galectin-3 levels in saliva. J Clin Pathol 69(12):1100–1104

  31. 31.

    Wang AY, Lam CW, Wang M et al (2009) Diagnostic potential of serum biomarkers for left ventricular abnormalities in chronic peritoneal dialysis patients. Nephrol Dial Transplant 24(6):1962–1969

  32. 32.

    Kitagawa M, Sugiyama H, Morinaga H et al (2011) Serum high-sensitivity cardiac troponin T is a significant biomarker of left-ventricular diastolic dysfunction in subjects with non-diabetic chronic kidney disease. Nephron Extra 1(1):166–177

  33. 33.

    Takashio S, Yamamuro M, Izumiya Y et al (2013) Coronary microvascular dysfunction and diastolic load correlate with cardiac troponin T release measured by a highly sensitive assay in patients with nonischemic heart failure. J Am Coll Cardiol 62(7):632–640

  34. 34.

    Eindhoven JA, Roos-Hesselink JW, van den Bosch AE et al (2015) High-sensitive troponin-T in adult congenital heart disease. Int J Cardiol 184:405–411

  35. 35.

    Rybicka J, Dobrowolski P, Lipczyńska M et al (2015) High sensitivity troponin T in adult congenital heart disease. Int J Cardiol 195:7–14

  36. 36.

    Daquarti G, March Vecchio N, Mitrione CS et al (2016) High-sensitivity troponin and right ventricular function in acute pulmonary embolism. Am J Emerg Med 34(8):1579–1582

  37. 37.

    Sun L, Tan X, Cao X et al (2016) Assessed value of high-sensitivity cardiac troponin T for cardiovascular disease among CKD patients. Ren Fail 38(5):728–737

  38. 38.

    Elmas E, Lang S, Dempfle CE et al (2008) Diagnostic performance of mid-regional pro-adrenomedullin as an analyte for the exclusion of left ventricular dysfunction. Int J Cardiol 128(1):107–111

  39. 39.

    Cinar O, Cevik E, Acar A et al (2012) Evaluation of mid-regional pro-atrial natriuretic peptide, procalcitonin, and mid-regional pro-adrenomedullin for the diagnosis and risk stratification of dyspneic ED patients. Am J Emerg Med 30(9):1915–1920

  40. 40.

    Gegenhuber A, Struck J, Poelz W et al (2006) Midregional pro-A-type natriuretic peptide measurements for diagnosis of acute destabilized heart failure in short-of-breath patients: comparison with B‑type natriuretic peptide (BNP) and amino-terminal proBNP. Clin Chem 52(5):827–831

  41. 41.

    Elmas E, Brueckmann M, Lang S et al (2008) Midregional pro-atrial natriuretic peptide is a useful indicator for the detection of impaired left ventricular function in patients with coronary artery disease. Int J Cardiol 128(2):244–249

  42. 42.

    Moertl D, Berger R, Struck J et al (2009) Comparison of midregional pro-atrial and B‑type natriuretic peptides in chronic heart failure: influencing factors, detection of left ventricular systolic dysfunction, and prediction of death. J Am Coll Cardiol 53(19):1783–1790

  43. 43.

    Maisel A, Mueller C, Nowak R et al (2010) Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol 55(19):2062–2076

  44. 44.

    Potocki M, Breidthardt T, Reichlin T et al (2010) Comparison of midregional pro-atrial natriuretic peptide with N‑terminal pro-B-type natriuretic peptide in the diagnosis of heart failure. J Intern Med 267(1):119–129

  45. 45.

    Daniels LB, Clopton P, Potocki M et al (2012) Influence of age, race, sex, and body mass index on interpretation of midregional pro atrial natriuretic peptide for the diagnosis of acute heart failure: results from the BACH multinational study. Eur J Heart Fail 14(1):22–31

  46. 46.

    Eckstein J, Potocki M, Murray K et al (2012) Direct comparison of mid-regional pro-atrial natriuretic peptide with N‑terminal pro B‑type natriuretic peptide in the diagnosis of patients with atrial fibrillation and dyspnoea. Heart 98(20):1518–1522

  47. 47.

    Shah RV, Truong QA, Gaggin HK et al (2012) Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. Eur Heart J 33(17):2197–2205

  48. 48.

    Richards M, Di Somma S, Mueller C et al (2013) Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients: results from the BACH Study (Biomarkers in ACute Heart Failure). Jacc Heart Fail 1(3):192–199

  49. 49.

    Hauser JA, Demyanets S, Rusai K et al (2016) Diagnostic performance and reference values of novel biomarkers of paediatric heart failure. Heart 102(20):1633–1639

  50. 50.

    Heining L, Giesa C, Ewig S (2016) MR-proANP, MR-proADM, and PCT in patients presenting with acute dyspnea in a medical emergency unit. Lung 194(2):185–191

  51. 51.

    Aldous SJ, Richards AM, Troughton R et al (2012) ST2 has diagnostic and prognostic utility for all-cause mortality and heart failure in patients presenting to the emergency department with chest pain. J Card Fail 18(4):304–310

  52. 52.

    Yuan W, Gu YY, Zhang DF (2012) Measurement of serum soluble ST2 in patients with heart failure and its disagnostic value. Acad J Second Mil Med Univ 33(2):175–178

  53. 53.

    Di YQ, Peng DQ (2013) Role of soluble ST2 in the diagnosis of heart failure. Chin J Cardiovasc Med 18(5):334–338

  54. 54.

    Huang CH, Shen J, Ma XW, al et (2013) Diagnostic value of serum sST2 for left ventricular diastolic dysfunction in patients with type 2 diabetes. Chin J Clin 7(6):2350–2354

  55. 55.

    Wang YC, Yu CC, Chiu FC et al (2013) Soluble ST2 as a biomarker for detecting stable heart failure with a normal ejection fraction in hypertensive patients. J Card Fail 19(3):163–168

  56. 56.

    Wen JL, Cui XY, Chen FY (2013) Correlation analysis of N‑terminal brain natriuretic peptide, brain natriuretic peptide and ST2 with heart failure severity. China Med Her 10(2):76–80

  57. 57.

    Yang Y, Luo Y (2013) The clinical significance of B‑type natriuretic peptide, N‑terminal pronatriuretic peptide and soluble ST2 monitoring in patients with heart failure. Guangdong Med J 34(13):2022–2026

  58. 58.

    Dai Q, Wu J, Guo W et al (2014) The performance evaluation of soluble ST2 detection kit and the clinical application of sST2 in diagnosing heart failure. Chin J Lab Med 37(5):394–398

  59. 59.

    Ding B, Song JP (2014) The role of IL-33 and sST2 in diagnosing heart failure[D]. Soochow university, JiangSu, pp 1–39

  60. 60.

    Ding HF, Sun L, Tian ST et al (2015) Changes and clinical significances of BNP, NT-proBNP and sST2 in patients with heart failure. PJCCPVD 23(6):16–18

  61. 61.

    Yang FT, Su BF, Zhan X et al (2015) Correlation between serum soluble ST2 and BNP in patients with heart failure. J Mod Lab Med 30(6):78–79

  62. 62.

    Yang W, Han HY, Pan YH et al (2016) Clinical research about B‑brain natriuretci peptide, soluble ST2 and interleukin 33 in patients with heart failure. Chin J Microcirc 26(1):45–48, 52

  63. 63.

    Thygesen K, Alpert JS, Jaffe AS et al (2012) Third universal definition of myocardial infarction. Circulation 126(16):2020–2035

  64. 64.

    Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

  65. 65.

    Moses LE, Shapiro D, Littenberg B (1993) Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med 12(14):1293–1316

  66. 66.

    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin Hiv Aids 5(6):463–466

  67. 67.

    Januzzi JL Jr, Chen-Tournoux AA, Moe G (2008) Amino-terminal pro-B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symptoms. Am J Cardiol 101(3A):29–38

  68. 68.

    Worster A, Balion CM, Hill SA et al (2008) Diagnostic accuracy of BNP and NT-proBNP in patients presenting to acute care settings with dyspnea: a systematic review. Clin Biochem 41(4–5):250–259

  69. 69.

    Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

  70. 70.

    Hill SA, Booth RA, Santaguida PL et al (2014) Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence. Heart Fail Rev 19(4):421–438

  71. 71.

    Peacock WF (2014) Novel biomarkers in acute heart failure: MR-pro-adrenomedullin. Clin Chem Lab Med 52(10):1433–1435

  72. 72.

    Potocki M, Ziller R, Mueller C (2012) Mid-regional pro-adrenomedullin in acute heart failure: a better biomarker or just another biomarker? Curr Heart Fail Rep 9(3):244–251

  73. 73.

    Zhan ST, Tan HZ, Sun YH (2015) Clinical epidemiology, 3rd edn. People’s Medical Publishing House, Beijing, pp 106–118

  74. 74.

    Hu Z, Han Z, Huang Y et al (2012) Diagnostic power of the mid-regional pro-atrial natriuretic peptide for heart failure patients with dyspnea: a meta-analysis. Clin Biochem 45(18):1634–1639

  75. 75.

    van Kimmenade RR, Januzzi JL Jr, Bakker JA et al (2009) Renal clearance of B‑type natriuretic peptide and amino terminal pro-B-type natriuretic peptide a mechanistic study in hypertensive subjects. J Am Coll Cardiol 53(10):884–890

  76. 76.

    Kim MS, Jeong TD, Han SB et al (2015) Role of soluble ST2 as a prognostic marker in patients with acute heart failure and renal insufficiency. J Korean Med Sci 30(5):569–575

  77. 77.

    Bayes-Genis A, Zamora E, de Antonio M et al (2013) Soluble ST2 serum concentration and renal function in heart failure. J Card Fail 19(11):768–775

  78. 78.

    Chung JZ, Jones DGR (2015) Effect of renal function on serum cardiac troponin T—Population and individual effects. Clin Biochem 48(12):807–810

  79. 79.

    Ponte B, Pruijm M, Ackermann D et al (2015) Copeptin is associated with kidney length, renal function, and prevalence of simple cysts in a population-based study. J Am Soc Nephrol 26(6):1415–1425

  80. 80.

    Zamora E, Lupón J, de Antonio M et al (2014) Renal function largely influences galectin-3 prognostic value in heart failure. Int J Cardiol 177(1):171–177

  81. 81.

    Chenevier-Gobeaux C, Guerin S, André S et al (2010) Midregional pro-atrial natriuretic peptide for the diagnosis of cardiac-related dyspnea according to renal function in the emergency department: a comparison with B‑type natriuretic peptide (BNP) and N‑terminal proBNP. Clin Chem 56(11):1708–1717

  82. 82.

    Lok DJ, Lok SI, Bruggink-André de la Porte PW et al (2013) Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol 102(2):103–110

  83. 83.

    Stolen CM, Adourian A, Meyer TE et al (2014) Plasma galectin-3 and heart failure outcomes in MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy). J Card Fail 20(11):793–799

  84. 84.

    Ky B, French B, McCloskey K et al (2011) High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail 4(2):180–187

Download references

Author information

Correspondence to S. Li.

Ethics declarations

Conflict of interest

Z. Huang, J. Zhong, Y. Ling, Y. Zhang, W. Lin, L. Tang, J. Liu, and S. Li declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Z. Huang and J. Zhong contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Zhong, J., Ling, Y. et al. Diagnostic value of novel biomarkers for heart failure. Herz 45, 65–78 (2020). https://doi.org/10.1007/s00059-018-4702-6

Download citation

Keywords

  • Diagnosis
  • Sensitivity and specificity
  • Biologic marker
  • Heart disease
  • Diastolic heart failure

Schlüsselwörter

  • Diagnose
  • Sensitivität und Spezifität
  • Biomarker
  • Herzerkrankung
  • Diastolische Herzinsuffizienz