Advertisement

Herz

, Volume 45, Issue 1, pp 50–64 | Cite as

Risk stratification in hypertrophic cardiomyopathy

  • S. MarrakchiEmail author
  • I. Kammoun
  • E. Bennour
  • L. Laroussi
  • S. Kachboura
Review articles

Abstract

Sudden cardiac death (SCD) is the most devastating complication of hypertrophic cardiomyopathy (HCM). The greatest challenge in the management of HCM is identifying those at increased risk, since an implantable cardioverter-defibrillator (ICD) is a potentially life-saving therapy. We sought to summarize the available data on SCD in HCM and provide a clinical perspective on the current differing and somewhat conflicting data on risk stratification, with balanced guidance regarding rational clinical decision-making. Additionally, we sought to determine the status of the current implementation of guidelines compiled by HCM experts worldwide. The HCM Risk-SCD model helps improve the risk stratification of HCM patients for primary prevention of SCD by calculating an individual risk estimate that contributes to the clinical decision-making process. Improved risk stratification is important for decision-making before ICD implantation for the primary prevention of SCD.

Keywords

Myocardium Hypertrophy Risk assessment Sudden cardiac death Implantable cardioverter-defibrillator 

Risikostratifizierung bei hypertropher Kardiomyopathie

Zusammenfassung

Der plötzliche Herztod („sudden cardiac death“, SCD) stellt die schwerwiegendste Komplikation der hypertrophen Kardiomyopathie (HCM) dar. Die größte Herausforderung in der Behandlung der HCM ist es, gefährdete Patienten zu erkennen, denn ein implantierbarer Defibrillator („implantable cardiac defibrillator“, ICD) ist ein potenziell lebensrettender Therapieansatz. Ziel der Autoren war es, die verfügbaren Daten zum SCD bei HCM zusammenzufassen und die aktuellen unterschiedlichen und sich teils widersprechenden Daten zur Risikostratifizierung aus klinischer Sicht mit einer ausgewogenen Anleitung zur rationalen klinischen Entscheidungsfindung zu erörtern. Darüber hinaus war es das Ziel, den aktuellen Stand der Etablierung der durch HCM-Spezialisten erstellten Leitlinien zu bestimmen. Das HCM Risk-SCD Modell trägt dazu bei, die Risikostratifizierung von HCM-Patienten zur Primärprävention eines SCD durch Berechnung eines individuellen Risikoschätzwerts zu verbessern, welcher einen Beitrag zum klinischen Entscheidungsfindungsprozess leistet. Eine verbesserte Risikostratifizierung ist für die Entscheidungsfindung vor einer ICD-Implantation zur Primärprävention des SCD von großer Bedeutung.

Schlüsselwörter

Myokard Hypertrophie Risikobeurteilung Plötzlicher Herztod Implantierbarer Kardioverter-Defibrillator 

Notes

Compliance with ethical guidelines

Conflict of interest

S. Marrakchi, I. Kammoun, E. Bennour, L. Laroussi and S. Kachboura declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Maron BJ, Ommen SR, Semsarian C et al (2014) Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol 64(1):83–99PubMedGoogle Scholar
  2. 2.
    Maron BJ, Gardin JM, Flack JM et al (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92(4):785–789PubMedGoogle Scholar
  3. 3.
    Trivedi A, Knight BP (2016) ICD therapy for primary prevention in hypertrophic cardiomyopathy. Arrhythm Electrophysiol Rev 5(3):188–196PubMedPubMedCentralGoogle Scholar
  4. 4.
    Hardarson T, De la Calzada CS, Curiel R, Goodwin JF (1973) Prognosis and mortality of hypertrophic obstructive cardiomyopathy. Lancet 2(7844):1462–1467PubMedGoogle Scholar
  5. 5.
    Maron BJ, Olivotto I, Spirito P et al (2000) Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation 102(8):858–864PubMedGoogle Scholar
  6. 6.
    van der Werf C, van Langen IM, Wilde AAM (2010) Sudden death in the young: what do we know about it and how to prevent? Circ Arrhythm Electrophysiol 3(1):96–104PubMedGoogle Scholar
  7. 7.
    Weissler-Snir A, Adler A, Williams L et al (2017) Prevention of sudden death in hypertrophic cardiomyopathy: bridging the gaps in knowledge. Eur Heart J 38(22):1728–1737PubMedGoogle Scholar
  8. 8.
    Rowin EJ, Maron MS (2016) The role of cardiac MRI in the diagnosis and risk stratification of hypertrophic cardiomyopathy. Arrhythm Electrophysiol Rev 5(3):197–202PubMedPubMedCentralGoogle Scholar
  9. 9.
    Maron BJ, Rowin EJ, Casey SA et al (2015) Hypertrophic cardiomyopathy in adulthood associated with low cardiovascular mortality with contemporary management strategies. J Am Coll Cardiol 65(18):1915–1928PubMedGoogle Scholar
  10. 10.
    Maron BJ, Spirito P, Shen WK et al (2007) Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA 298(4):405–412PubMedGoogle Scholar
  11. 11.
    Gersh BJ, Maron BJ, Bonow RO et al (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 58(25):e212–260PubMedGoogle Scholar
  12. 12.
    Kawashiri M, Hayashi K, Konno T et al (2014) Current perspectives in genetic cardiovascular disorders: from basic to clinical aspects. Heart Vessels 29(2):129–141PubMedGoogle Scholar
  13. 13.
    Konno T, Shimizu M, Ino H et al (2003) A novel missense mutation in the myosin binding protein-C gene is responsible for hypertrophic cardiomyopathy with left ventricular dysfunction and dilation in elderly patients. J Am Coll Cardiol 41(5):781–786PubMedGoogle Scholar
  14. 14.
    Konno T, Chang S, Seidman JG, Seidman CE (2010) Genetics of hypertrophic cardiomyopathy. Curr Opin Cardiol 25(3):205–209PubMedGoogle Scholar
  15. 15.
    Disertori M, Masè M, Ravelli F (2017) Myocardial fibrosis predicts ventricular tachyarrhythmias. Trends Cardiovasc Med 27(5):363–372PubMedGoogle Scholar
  16. 16.
    Varnava AM, Elliott PM, Mahon N et al (2001) Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am J Cardiol 88(3):275–279PubMedGoogle Scholar
  17. 17.
    Basso C, Thiene G, Corrado D et al (2000) Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31(8):988–998PubMedGoogle Scholar
  18. 18.
    Chan RH, Maron BJ, Olivotto I et al (2014) Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130(6):484–495PubMedGoogle Scholar
  19. 19.
    Nguyen TP, Qu Z, Weiss JN (2014) Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. J Mol Cell Cardiol 70:83–91PubMedGoogle Scholar
  20. 20.
    Morita N, Mandel WJ, Kobayashi Y, Karagueuzian HS (2014) Cardiac fibrosis as a determinant of ventricular tachyarrhythmias. J Arrhythm 30(6):389–394PubMedPubMedCentralGoogle Scholar
  21. 21.
    de Jong S, van Veen TAB, van Rijen HVM, de Bakker JMT (2011) Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol 57(6):630–638PubMedGoogle Scholar
  22. 22.
    Elliott PM, Anastasakis A, Borger MA et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35(39):2733–2779Google Scholar
  23. 23.
    Maron BJ, McKenna WJ, Danielson GK et al (2003) American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol 42(9):1687–1713PubMedGoogle Scholar
  24. 24.
    Betensky BP, Dixit S (2014) Sudden cardiac death in patients with nonischemic cardiomyopathy. Indian Heart J 66:S35–45PubMedPubMedCentralGoogle Scholar
  25. 25.
    Veselka J, Anavekar NS, Charron P (2017) Hypertrophic obstructive cardiomyopathy. Lancet 389(10075):1253–1267PubMedGoogle Scholar
  26. 26.
    Maron BJ, Haas TS, Shannon KM et al (2009) Long-term survival after cardiac arrest in hypertrophic cardiomyopathy. Heart Rhythm 6(7):993–997PubMedGoogle Scholar
  27. 27.
    Elliott PM, Sharma S, Varnava A et al (1999) Survival after cardiac arrest or sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 33(6):1596–1601PubMedGoogle Scholar
  28. 28.
    Elliott PM, Poloniecki J, Dickie S et al (2000) Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol 36(7):2212–2218PubMedGoogle Scholar
  29. 29.
    Olivotto I, Maron MS, Adabag AS et al (2005) Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J Am Coll Cardiol 46(3):480–487PubMedGoogle Scholar
  30. 30.
    Maron BJ, Roberts WC, Epstein SE (1982) Sudden death in hypertrophic cardiomyopathy: a profile of 78 patients. Circulation 65(7):1388–1394PubMedGoogle Scholar
  31. 31.
    Maron BJ, Rowin EJ, Casey SA et al (2013) Risk stratification and outcome of patients with hypertrophic cardiomyopathy >=60 years of age. Circulation 127(5):585–593PubMedGoogle Scholar
  32. 32.
    Monserrat L, Elliott PM, Gimeno JR et al (2003) Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: an independent marker of sudden death risk in young patients. J Am Coll Cardiol 42(5):873–879PubMedGoogle Scholar
  33. 33.
    Gimeno JR, Tomé-Esteban M, Lofiego C et al (2009) Exercise-induced ventricular arrhythmias and risk of sudden cardiac death in patients with hypertrophic cardiomyopathy. Eur Heart J 30(21):2599–2605PubMedGoogle Scholar
  34. 34.
    Dimitrow PP, Chojnowska L, Rudzinski T et al (2010) Sudden death in hypertrophic cardiomyopathy: old risk factors re-assessed in a new model of maximalized follow-up. Eur Heart J 31(24):3084–3093PubMedGoogle Scholar
  35. 35.
    Adabag AS, Casey SA, Kuskowski MA et al (2005) Spectrum and prognostic significance of arrhythmias on ambulatory Holter electrocardiogram in hypertrophic cardiomyopathy. J Am Coll Cardiol 45(5):697–704PubMedGoogle Scholar
  36. 36.
    Spirito P, Rapezzi C, Autore C et al (1994) Prognosis of asymptomatic patients with hypertrophic cardiomyopathy and nonsustained ventricular tachycardia. Circulation 90(6):2743–2747PubMedGoogle Scholar
  37. 37.
    Borggrefe M, Kuhn H, Königer HH et al (1983) Arrhythmias in hypertrophic obstructive and non-obstructive cardiomyopathy. Eur Heart J 4(Suppl F):245–251PubMedGoogle Scholar
  38. 38.
    Viswanathan K, Suszko AM, Das M et al (2016) Rapid device-detected nonsustained ventricular tachycardia in the risk stratification of hypertrophic cardiomyopathy. Pacing Clin Electrophysiol 39(7):642–651PubMedGoogle Scholar
  39. 39.
    Francia P, Santini D, Musumeci B et al (2014) Clinical impact of nonsustained ventricular tachycardia recorded by the implantable cardioverter-defibrillator in patients with hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol 25(11):1180–1187PubMedGoogle Scholar
  40. 40.
    Behr ER, Elliott P, McKenna WJ (2002) Role of invasive EP testing in the evaluation and management of hypertrophic cardiomyopathy. Card Electrophysiol Rev 6(4):482–486PubMedGoogle Scholar
  41. 41.
    Spirito P, Maron BJ (1990) Relation between extent of left ventricular hypertrophy and occurrence of sudden cardiac death in hypertrophic cardiomyopathy. J Am Coll Cardiol 15(7):1521–1526PubMedGoogle Scholar
  42. 42.
    Spirito P, Bellone P, Harris KM et al (2000) Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med 342(24):1778–1785PubMedGoogle Scholar
  43. 43.
    Sorajja P, Nishimura RA, Ommen SR et al (2006) Use of echocardiography in patients with hypertrophic cardiomyopathy: clinical implications of massive hypertrophy. J Am Soc Echocardiogr 19(6):788–795PubMedGoogle Scholar
  44. 44.
    Elliott P, Gimeno J, Tomé M, McKenna W (2006) Left ventricular outflow tract obstruction and sudden death in hypertrophic cardiomyopathy. Eur Heart J 27(24):3073 (author reply 3073–3074)PubMedGoogle Scholar
  45. 45.
    Christiaans I, van Engelen K, van Langen IM et al (2010) Risk stratification for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of clinical risk markers. Europace 12(3):313–321PubMedGoogle Scholar
  46. 46.
    Maki S, Ikeda H, Muro A et al (1998) Predictors of sudden cardiac death in hypertrophic cardiomyopathy. Am J Cardiol 82(6):774–778PubMedGoogle Scholar
  47. 47.
    Bos JM, Maron BJ, Ackerman MJ et al (2010) Role of family history of sudden death in risk stratification and prevention of sudden death with implantable defibrillators in hypertrophic cardiomyopathy. Am J Cardiol 106(10):1481–1486PubMedGoogle Scholar
  48. 48.
    Spirito P, Autore C, Rapezzi C et al (2009) Syncope and risk of sudden death in hypertrophic cardiomyopathy. Circulation 119(13):1703–1710PubMedGoogle Scholar
  49. 49.
    O’Mahony C, Jichi F, Pavlou M et al (2014) A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J 35(30):2010–2020PubMedGoogle Scholar
  50. 50.
    Li PR, Li XL, Xu F et al (2016) Clinical characteristics and outcome of patients with dilated-hypertrophic cardiomyopathy. Zhonghua Xin Xue Guan Bing Za Zhi 44(4):327–330PubMedGoogle Scholar
  51. 51.
    Minami Y, Haruki S, Yashiro B et al (2016) Enlarged left atrium and sudden death risk in hypertrophic cardiomyopathy patients with or without atrial fibrillation. J Cardiol 68(6):478–484PubMedGoogle Scholar
  52. 52.
    Debonnaire P, Joyce E, Hiemstra Y et al (2017) Left atrial size and function in hypertrophic cardiomyopathy patients and risk of new-onset atrial fibrillation. Circ Arrhythm Electrophysiol 10(2):e004052.  https://doi.org/10.1161/CIRCEP.116.004052 CrossRefPubMedGoogle Scholar
  53. 53.
    Maron MS, Olivotto I, Betocchi S et al (2003) Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med 348(4):295–303PubMedGoogle Scholar
  54. 54.
    McLeod CJ, Ommen SR, Ackerman MJ et al (2007) Surgical septal myectomy decreases the risk for appropriate implantable cardioverter defibrillator discharge in obstructive hypertrophic cardiomyopathy. Eur Heart J 28(21):2583–2588PubMedGoogle Scholar
  55. 55.
    Vriesendorp PA, Liebregts M, Steggerda RC et al (2014) Long-term outcomes after medical and invasive treatment in patients with hypertrophic cardiomyopathy. JACC Heart Fail 2(6):630–636PubMedGoogle Scholar
  56. 56.
    Ball W, Ivanov J, Rakowski H et al (2011) Long-term survival in patients with resting obstructive hypertrophic cardiomyopathy comparison of conservative versus invasive treatment. J Am Coll Cardiol 58(22):2313–2321PubMedGoogle Scholar
  57. 57.
    Pozios I, Corona-Villalobos C, Sorensen LL et al (2015) Comparison of outcomes in patients with nonobstructive, labile-obstructive, and chronically obstructive hypertrophic cardiomyopathy. Am J Cardiol 116(6):938–944PubMedPubMedCentralGoogle Scholar
  58. 58.
    Frenneaux MP, Counihan PJ, Caforio AL et al (1990) Abnormal blood pressure response during exercise in hypertrophic cardiomyopathy. Circulation 82(6):1995–2002PubMedGoogle Scholar
  59. 59.
    Olivotto I, Maron BJ, Montereggi A et al (1999) Prognostic value of systemic blood pressure response during exercise in a community-based patient population with hypertrophic cardiomyopathy. J Am Coll Cardiol 33(7):2044–2051PubMedGoogle Scholar
  60. 60.
    Ciampi Q, Betocchi S, Lombardi R et al (2002) Hemodynamic determinants of exercise-induced abnormal blood pressure response in hypertrophic cardiomyopathy. J Am Coll Cardiol 40(2):278–284PubMedGoogle Scholar
  61. 61.
    Counihan PJ, Frenneaux MP, Webb DJ, McKenna WJ (1991) Abnormal vascular responses to supine exercise in hypertrophic cardiomyopathy. Circulation 84(2):686–696PubMedGoogle Scholar
  62. 62.
    Campbell R, Manyari DE, McKenna WJ, Frenneaux M (2003) What is the mechanism of abnormal blood pressure response on exercise in hypertrophic cardiomyopathy? J Am Coll Cardiol 41(11):2102PubMedGoogle Scholar
  63. 63.
    Sadoul N, Prasad K, Elliott PM et al (1997) Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy. Circulation 96(9):2987–2991PubMedGoogle Scholar
  64. 64.
    Desai MY, Bhonsale A, Patel P et al (2014) Exercise echocardiography in asymptomatic HCM: exercise capacity, and not LV outflow tract gradient predicts long-term outcomes. JACC Cardiovasc Imaging 7(1):26–36PubMedGoogle Scholar
  65. 65.
    Moravsky G, Ofek E, Rakowski H et al (2013) Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR. JACC Cardiovasc Imaging 6(5):587–596PubMedGoogle Scholar
  66. 66.
    Briasoulis A, Mallikethi-Reddy S, Palla M et al (2015) Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: a meta-analysis. Heart 101(17):1406–1411PubMedGoogle Scholar
  67. 67.
    Maron MS, Appelbaum E, Harrigan CJ et al (2008) Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail 1(3):184–191PubMedGoogle Scholar
  68. 68.
    Moon JCC, Reed E, Sheppard MN et al (2004) The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 43(12):2260–2264PubMedGoogle Scholar
  69. 69.
    van der Bijl P, Delgado V, Bax JJ (2016) Noninvasive imaging markers associated with sudden cardiac death. Trends Cardiovasc Med 26(4):348–360PubMedGoogle Scholar
  70. 70.
    Green JJ, Berger JS, Kramer CM, Salerno M (2012) Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 5(4):370–377PubMedGoogle Scholar
  71. 71.
    Adabag AS, Maron BJ, Appelbaum E et al (2008) Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 51(14):1369–1374PubMedGoogle Scholar
  72. 72.
    Kwon DH, Setser RM, Popović ZB et al (2008) Association of myocardial fibrosis, electrocardiography and ventricular tachyarrhythmia in hypertrophic cardiomyopathy: a delayed contrast enhanced MRI study. Int J Cardiovasc Imaging 24(6):617–625PubMedGoogle Scholar
  73. 73.
    Rubinshtein R, Glockner JF, Ommen SR et al (2010) Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail 3(1):51–58PubMedGoogle Scholar
  74. 74.
    Inada K, Seiler J, Roberts-Thomson KC et al (2011) Substrate characterization and catheter ablation for monomorphic ventricular tachycardia in patients with apical hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol 22(1):41–48PubMedGoogle Scholar
  75. 75.
    Weng Z, Yao J, Chan RH et al (2016) Prognostic value of LGE-CMR in HCM: a meta-analysis. JACC Cardiovasc Imaging 9(12):1392–1402PubMedGoogle Scholar
  76. 76.
    Amano Y, Yanagisawa F, Kitamura M et al (2017) Relationship of nonseptal late gadolinium enhancement to ventricular tachyarrhythmia in hypertrophic cardiomyopathy. J Comput Assist Tomogr 41(5):768–771.  https://doi.org/10.1097/RCT.0000000000000599 CrossRefPubMedGoogle Scholar
  77. 77.
    Ismail TF, Jabbour A, Gulati A et al (2014) Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart 100(23):1851–1858PubMedGoogle Scholar
  78. 78.
    Chan RH, Maron BJ, Olivotto I et al (2015) Significance of late gadolinium enhancement at right ventricular attachment to ventricular septum in patients with hypertrophic cardiomyopathy. Am J Cardiol 116(3):436–441PubMedGoogle Scholar
  79. 79.
    Sakamoto N, Kawamura Y, Sato N et al (2015) Late gadolinium enhancement on cardiac magnetic resonance represents the depolarizing and repolarizing electrically damaged foci causing malignant ventricular arrhythmia in hypertrophic cardiomyopathy. Heart Rhythm 12(6):1276–1284PubMedGoogle Scholar
  80. 80.
    Hinojar R, Zamorano JL, Gonzalez Gómez A et al (2017) ESC sudden-death risk model in hypertrophic cardiomyopathy: Incremental value of quantitative contrast-enhanced CMR in intermediate-risk patients. Clin Cardiol 40(10):853–860.  https://doi.org/10.1002/clc.22735. Epub 2017 Jun 14CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Doesch C, Tülümen E, Akin I et al (2017) Incremental benefit of late gadolinium cardiac magnetic resonance imaging for risk stratification in patients with hypertrophic cardiomyopathy. Sci Rep 7(1):6336PubMedPubMedCentralGoogle Scholar
  82. 82.
    Stroumpoulis KI, Pantazopoulos IN, Xanthos TT (2010) Hypertrophic cardiomyopathy and sudden cardiac death. World J Cardiol 2(9):289–298PubMedPubMedCentralGoogle Scholar
  83. 83.
    Olivotto I, Maron BJ, Appelbaum E et al (2010) Spectrum and clinical significance of systolic function and myocardial fibrosis assessed by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol 106(2):261–267PubMedGoogle Scholar
  84. 84.
    Chan RH, Maron BJ, Olivotto I et al (2014) Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130(6):484–495PubMedGoogle Scholar
  85. 85.
    Bruder O, Wagner A, Jensen CJ et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):875–887PubMedGoogle Scholar
  86. 86.
    O’Hanlon R, Grasso A, Roughton M et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):867–874PubMedGoogle Scholar
  87. 87.
    Choudhury L, Mahrholdt H, Wagner A et al (2002) Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 40(12):2156–2164PubMedGoogle Scholar
  88. 88.
    Berliner JI, Kino A, Carr JC et al (2013) Cardiac computed tomographic imaging to evaluate myocardial scarring/fibrosis in patients with hypertrophic cardiomyopathy: a comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 29(1):191–197PubMedGoogle Scholar
  89. 89.
    Choudhury L, Rigolin VH, Bonow RO (2017) Integrated imaging in hypertrophic cardiomyopathy. Am J Cardiol 119(2):328–339PubMedGoogle Scholar
  90. 90.
    Maron MS, Finley JJ, Bos JM et al (2008) Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation 118(15):1541–1549PubMedGoogle Scholar
  91. 91.
    Hanneman K, Crean AM, Williams L et al (2014) Cardiac magnetic resonance imaging findings predict major adverse events in apical hypertrophic cardiomyopathy. J Thorac Imaging 29(6):331–339PubMedGoogle Scholar
  92. 92.
    Sakamoto T, Tei C, Murayama M et al (1976) Giant T wave inversion as a manifestation of asymmetrical apical hypertrophy (AAH) of the left ventricle. Echocardiographic and ultrasono-cardiotomographic study. Jpn Heart J 17(5):611–629PubMedGoogle Scholar
  93. 93.
    Trojan MKB, Biederman RW (2017) Management of an asymptomatic patient with the apical variant of hypertrophic cardiomyopathy. Echocardiography 34(7):1092–1095PubMedGoogle Scholar
  94. 94.
    Harris KM, Spirito P, Maron MS et al (2006) Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation 114(3):216–225PubMedGoogle Scholar
  95. 95.
    Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287(10):1308–1320PubMedGoogle Scholar
  96. 96.
    Frey N, Luedde M, Katus HA (2011) Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol 9(2):91–100PubMedGoogle Scholar
  97. 97.
    Ho CY (2012) Hypertrophic cardiomyopathy in 2012. Circulation 125(11):1432–1438PubMedPubMedCentralGoogle Scholar
  98. 98.
    Maron BJ, Maron MS, Semsarian C (2012) Double or compound sarcomere mutations in hypertrophic cardiomyopathy: a potential link to sudden death in the absence of conventional risk factors. Heart Rhythm 9(1):57–63PubMedGoogle Scholar
  99. 99.
    Wang J, Wang Y, Zou Y et al (2014) Malignant effects of multiple rare variants in sarcomere genes on the prognosis of patients with hypertrophic cardiomyopathy. Eur J Heart Fail 16(9):950–957PubMedGoogle Scholar
  100. 100.
    Chida A, Inai K, Sato H et al (2017) Prognostic predictive value of gene mutations in Japanese patients with hypertrophic cardiomyopathy. Heart Vessels 32(6):700–707PubMedGoogle Scholar
  101. 101.
    Ingles J, Doolan A, Chiu C (2005) Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet 42(10):e59PubMedPubMedCentralGoogle Scholar
  102. 102.
    Guo X, Fan C, Wang Y et al (2017) Genetic anticipation in a special form of hypertrophic cardiomyopathy with sudden cardiac death in a family with 74 members across 5 generations. Medicine (Baltimore) 96(11):e6249Google Scholar
  103. 103.
    Fraiche A, Hypertrophic Cardiomyopathy WA (2016) New evidence since the 2011 American Cardiology of Cardiology Foundation and American Heart Association guideline. Curr Cardiol Rep 18(8):70PubMedGoogle Scholar
  104. 104.
    Maron BJ, Mathenge R, Casey SA et al (1999) Clinical profile of hypertrophic cardiomyopathy identified de novo in rural communities. J Am Coll Cardiol 33(6):1590–1595PubMedGoogle Scholar
  105. 105.
    Zou Y, Song L, Wang Z et al (2004) Prevalence of idiopathic hypertrophic cardiomyopathy in China: a population-based echocardiographic analysis of 8080 adults. Am J Med 116(1):14–18PubMedGoogle Scholar
  106. 106.
    Maron BJ, Spirito P, Roman MJ et al (2004) Prevalence of hypertrophic cardiomyopathy in a population-based sample of American Indians aged 51 to 77 years (the Strong Heart Study). Am J Cardiol 93(12):1510–1514PubMedGoogle Scholar
  107. 107.
    Maro EE, Janabi M, Kaushik R (2006) Clinical and echocardiographic study of hypertrophic cardiomyopathy in Tanzania. Trop Doct 36(4):225–227PubMedGoogle Scholar
  108. 108.
    Ng CT, Chee TS, Ling LF et al (2011) Prevalence of hypertrophic cardiomyopathy on an electrocardiogram-based pre-participation screening programme in a young male South-East Asian population: results from the Singapore Armed Forces Electrocardiogram and Echocardiogram screening protocol. Europace 13(6):883–888PubMedGoogle Scholar
  109. 109.
    Lipshultz SE, Sleeper LA, Towbin JA et al (2003) The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 348(17):1647–1655PubMedGoogle Scholar
  110. 110.
    Nugent AW, Daubeney PEF, Chondros P et al (2005) Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation 112(9):1332–1338PubMedGoogle Scholar
  111. 111.
    Olivotto I, Girolami F, Sciagrà R et al (2011) Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol 58(8):839–848PubMedGoogle Scholar
  112. 112.
    Watkins H, McKenna WJ, Thierfelder L et al (1995) Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 332(16):1058–1064PubMedGoogle Scholar
  113. 113.
    Van Driest SL, Maron BJ, Ackerman MJ (2004) From malignant mutations to malignant domains: the continuing search for prognostic significance in the mutant genes causing hypertrophic cardiomyopathy. Heart 90(1):7–8PubMedPubMedCentralGoogle Scholar
  114. 114.
    O’Mahony C, Tome-Esteban M, Lambiase PD et al (2013) A validation study of the 2003 American College of Cardiology/European Society of Cardiology and 2011 American College of Cardiology Foundation/American Heart Association risk stratification and treatment algorithms for sudden cardiac death in patients with hypertrophic cardiomyopathy. Heart 99(8):534–541PubMedGoogle Scholar
  115. 115.
    Efthimiadis GK, Parcharidou DG, Giannakoulas G et al (2009) Left ventricular outflow tract obstruction as a risk factor for sudden cardiac death in hypertrophic cardiomyopathy. Am J Cardiol 104(5):695–699PubMedGoogle Scholar
  116. 116.
    Olivotto I, Cecchi F, Poggesi C, Yacoub MH (2012) Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail 5(4):535–546PubMedGoogle Scholar
  117. 117.
    Maron BJ, Casey SA, Chan RH et al (2015) Independent assessment of the European Society of Cardiology sudden death risk model for hypertrophic cardiomyopathy. Am J Cardiol 116(5):757–764PubMedGoogle Scholar
  118. 118.
    Zhu SH, Li Y, Huang W et al (2017) Feasibility of the 2014 European guidelines risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy in Chinese patients. Zhonghua Xin Xue Guan Bing Za Zhi 45(5):404–408PubMedGoogle Scholar
  119. 119.
    Fernández A, Quiroga A, Ochoa JP et al (2016) Validation of the 2014 European Society of Cardiology sudden cardiac death risk prediction model in hypertrophic cardiomyopathy in a Reference Center in South America. Am J Cardiol 118(1):121–126PubMedGoogle Scholar
  120. 120.
    Vriesendorp PA, Schinkel AFL, Liebregts M et al (2015) Validation of the 2014 European Society of Cardiology guidelines risk prediction model for the primary prevention of sudden cardiac death in hypertrophic cardiomyopathy. Circ Arrhythm Electrophysiol 8(4):829–835PubMedGoogle Scholar
  121. 121.
    Elliott PM, Gimeno Blanes JR, Mahon NG et al (2001) Relation between severity of left-ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy. Lancet 357(9254):420–424PubMedGoogle Scholar
  122. 122.
    Vriesendorp PA, Schinkel AFL, Van Cleemput J et al (2013) Implantable cardioverter-defibrillators in hypertrophic cardiomyopathy: patient outcomes, rate of appropriate and inappropriate interventions, and complications. Am Heart J 166(3):496–502PubMedGoogle Scholar
  123. 123.
    Girolami F, Ho CY, Semsarian C et al (2010) Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol 55(14):1444–1453PubMedGoogle Scholar
  124. 124.
    Ommen SR, Maron BJ, Olivotto I et al (2005) Long-term effects of surgical septal myectomy on survival in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 46(3):470–476PubMedGoogle Scholar
  125. 125.
    ten Cate FJ, Soliman OII, Michels M et al (2010) Long-term outcome of alcohol septal ablation in patients with obstructive hypertrophic cardiomyopathy: a word of caution. Circ Heart Fail 3(3):362–369PubMedGoogle Scholar
  126. 126.
    Veselka J, Tomašov P, Zemánek D (2011) Long-term effects of varying alcohol dosing in percutaneous septal ablation for obstructive hypertrophic cardiomyopathy: a randomized study with a follow-up up to 11 years. Can J Cardiol 27(6):763–767PubMedGoogle Scholar
  127. 127.
    Jensen MK, Prinz C, Horstkotte D et al (2013) Alcohol septal ablation in patients with hypertrophic obstructive cardiomyopathy: low incidence of sudden cardiac death and reduced risk profile. Heart 99(14):1012–1017PubMedGoogle Scholar
  128. 128.
    Sugrue A, Killu AM, DeSimone CV et al (2017) Utility of T‑wave amplitude as a non-invasive risk marker of sudden cardiac death in hypertrophic cardiomyopathy. Open Heart 4(1):e561PubMedPubMedCentralGoogle Scholar
  129. 129.
    Akboğa MK, Gülcihan Balcı K, Yılmaz S et al (2017) Tp-e interval and Tp-e/QTc ratio as novel surrogate markers for prediction of ventricular arrhythmic events in hypertrophic cardiomyopathy. Anatol J Cardiol 18(1):48–53PubMedPubMedCentralGoogle Scholar
  130. 130.
    Castro-Torres Y (2017) Tp-e interval and Tp-e/QTc ratio: new choices for risk stratification of arrhythmic events in patients with hypertrophic cardiomyopathy. Anatol J Cardiol 17(6):493PubMedPubMedCentralGoogle Scholar
  131. 131.
    Castro-Torres Y, Carmona-Puerta R, Katholi RE (2015) Ventricular repolarization markers for predicting malignant arrhythmias in clinical practice. World J Clin Cases 3(8):705–720PubMedPubMedCentralGoogle Scholar
  132. 132.
    Gupta P, Patel C, Patel H et al (2008) T(p-e)/QT ratio as an index of arrhythmogenesis. J Electrocardiol 41(6):567–574PubMedGoogle Scholar
  133. 133.
    Saumarez RC, Pytkowski M, Sterlinski M et al (2008) Paced ventricular electrogram fractionation predicts sudden cardiac death in hypertrophic cardiomyopathy. Eur Heart J 29(13):1653–1661PubMedGoogle Scholar
  134. 134.
    Magrì D, Santolamazza C (2017) Cardiopulmonary exercise test in hypertrophic cardiomyopathy. Ann Am Thorac Soc 14(Supplement_1):S102–S109PubMedGoogle Scholar
  135. 135.
    Finocchiaro G, Haddad F, Knowles JW et al (2015) Cardiopulmonary responses and prognosis in hypertrophic cardiomyopathy: a potential role for comprehensive noninvasive hemodynamic assessment. JACC Heart Fail 3(5):408–418PubMedGoogle Scholar
  136. 136.
    Belardinelli R, Lacalaprice F, Carle F et al (2003) Exercise-induced myocardial ischaemia detected by cardiopulmonary exercise testing. Eur Heart J 24(14):1304–1313PubMedGoogle Scholar
  137. 137.
    Masri A, Pierson LM, Smedira NG et al (2015) Predictors of long-term outcomes in patients with hypertrophic cardiomyopathy undergoing cardiopulmonary stress testing and echocardiography. Am Heart J 169(5):684–692.e1PubMedGoogle Scholar
  138. 138.
    Coats CJ, Rantell K, Bartnik A et al (2015) Cardiopulmonary exercise testing and prognosis in hypertrophic cardiomyopathy. Circ Heart Fail 8(6):1022–1031PubMedGoogle Scholar
  139. 139.
    Magrì D, Limongelli G, Re F et al (2016) Cardiopulmonary exercise test and sudden cardiac death risk in hypertrophic cardiomyopathy. Heart 102(8):602–609PubMedGoogle Scholar
  140. 140.
    Brito D (2017) Predicting risk of sudden death in hypertrophic cardiomyopathy: can additional simple markers help? Rev Port Cardiol 36(4):247–249PubMedGoogle Scholar
  141. 141.
    Cambronero F, Marín F, Roldán V et al (2009) Biomarkers of pathophysiology in hypertrophic cardiomyopathy: implications for clinical management and prognosis. Eur Heart J 30(2):139–151PubMedGoogle Scholar
  142. 142.
    EXpert Group on Biomarkers (2014) Biomarkers in cardiology—part 1—in heart failure and specific cardiomyopathies. Arq Bras Cardiol 103(6):451–459PubMedCentralGoogle Scholar
  143. 143.
    Brito D, Matias JS, Sargento L et al (2004) Plasma N‑terminal pro-brain natriuretic peptide: a marker of left ventricular hypertrophy in hypertrophic cardiomyopathy. Rev Port Cardiol 23(12):1557–1582PubMedGoogle Scholar
  144. 144.
    Ozyilmaz S, Akgul O, Uyarel H et al (2017) The importance of the neutrophil-to-lymphocyte ratio in patients with hypertrophic cardiomyopathy. Rev Port Cardiol 36(4):239–246PubMedGoogle Scholar
  145. 145.
    Colan SD, Lipshultz SE, Lowe AM et al (2007) Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation 115(6):773–781PubMedGoogle Scholar
  146. 146.
    Maron BJ, Spirito P, Ackerman MJ, et al (2013) Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol 61(14):1527–1535PubMedGoogle Scholar
  147. 147.
    Decker JA, Rossano JW, Smith EO et al (2009) Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J Am Coll Cardiol 54(3):250–254PubMedGoogle Scholar
  148. 148.
    Ostman-Smith I, Wettrell G, Keeton B et al (2005) Echocardiographic and electrocardiographic identification of those children with hypertrophic cardiomyopathy who should be considered at high-risk of dying suddenly. Cardiol Young 15(6):632–642PubMedGoogle Scholar
  149. 149.
    Dewland TA, Pellegrini CN, Wang Y et al (2011) Dual-chamber implantable cardioverter-defibrillator selection is associated with increased complication rates and mortality among patients enrolled in the NCDR implantable cardioverter-defibrillator registry. J Am Coll Cardiol 58(10):1007–1013PubMedGoogle Scholar
  150. 150.
    Norrish G, Cantarutti N, Pissaridou E et al (2017) Risk factors for sudden cardiac death in childhood hypertrophic cardiomyopathy: a systematic review and meta-analysis. Eur J Prev Cardiol 24(11):1220–1230PubMedGoogle Scholar
  151. 151.
    Schinkel AFL, Vriesendorp PA, Sijbrands EJG et al (2012) Outcome and complications after implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy: systematic review and meta-analysis. Circ Heart Fail 5(5):552–559PubMedGoogle Scholar
  152. 152.
    Konstantinou DM, Efthimiadis GK, Vassilikos V et al (2016) Implantable cardioverter defibrillators for primary prevention of sudden death in hypertrophic cardiomyopathy. J Cardiovasc Med 17(6):433–439Google Scholar
  153. 153.
    Wilkoff BL, Fauchier L, Stiles MK et al (2016) 2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Heart Rhythm 13(2):e50–e86PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • S. Marrakchi
    • 1
    • 2
    Email author
  • I. Kammoun
    • 1
    • 2
  • E. Bennour
    • 1
    • 2
  • L. Laroussi
    • 1
    • 2
  • S. Kachboura
    • 1
    • 2
  1. 1.Department of CardiologyAbderrahmane Mami HospitalArianaTunisia
  2. 2.El Manar UniversityTunisTunisia

Personalised recommendations