, Volume 44, Issue 1, pp 76–81 | Cite as

Predictive value of ScvO2 monitoring for pericardial tamponade after cardiac surgery

  • S. Saha
  • H. Baraki
  • I. Kutschka
  • J. HademEmail author
Original articles



We examined the predictive value of central venous oxygen saturation (ScvO2) changes regarding the occurrence of pericardial tamponade following cardiac surgery.


We retrospectively identified 66 consecutive patients in whom ScvO2 and arterial lactate levels were analyzed during an 8‑h time interval preceding pericardiotomy due to pericardial tamponade (PT), and at equivalent time points in 30 control patients (C) who had an uncomplicated course.


The median age of the patients was 74 years (interquartile range, 63–78). Three percent of procedures were re-operations. There were no differences between the baseline values of PT and C patients. Pericardiotomy was performed on average 1 day (0–3.5) after cardiac surgery. PT patients displayed a significant decline (p < 0.001) to lower ScvO2 levels (p < 0.001) and a significant increase (p = 0.005) to higher arterial lactate levels (p = 0.019) during the 8 h preceding pericardiotomy, whereas C patients did not (p = 0.440 and p = 0.279, respectively). PT was associated with a longer hospital stay (p = 0.04) and a higher in-hospital mortality (p = 0.008). An ScvO2 decline below 60% (p = 0.018), a delta ScvO2 decline greater than 5% (p = 0.001), and a delta lactate increase greater than 0.18 mmol/l (p = 0.002) during the 8 h preceding pericardiotomy were independently associated with PT. None of these parameters predicted in-hospital mortality.


Deteriorations in ScvO2 might serve as an early marker of PT following cardiac surgery.


Hemodynamics Oxygen consumption Pericardiotomy Reoperation Hospital mortality 

Prädiktiver Wert des SzvO2-Monitorings bezüglich einer Perikardtamponade nach Herzoperation



Die Autoren untersuchten die prädiktive Aussagekraft von Veränderungen der zentralvenösen Sauerstoffsättigung (SzvO2) bezüglich des postoperativen Auftretens einer Perikardtamponade nach herzchirurgischen Eingriffen.


Es wurden 66 konsekutive Patienten mit postoperativer Perikardtamponade (PT) im Hinblick auf Veränderungen der SzvO2 und arteriellen Laktatlevel innerhalb eines 8‑stündigen Intervalls vor Perikardiotomie untersucht. Als Vergleichsgruppe dienten 30 Patienten mit komplikationslosem Verlauf (C).


Das mediane Alter lag bei 74 (Interquartilsspanne 63–78) Jahren. In 3% der Fälle handelte es sich um eine Reoperation. Es fanden sich keine Gruppenunterschiede bzgl. der Basisparameter. Eine Perikardiotomie erfolgte im Mittel einen Tag (0–3,5) nach herzchirurgischem Primäreingriff. Patienten der PT-Gruppe zeigten hierbei einen signifikanten Abfall (p < 0,001) hin zu niedrigeren SzvO2 (p < 0,001) und einen signifikanten Anstieg (p = 0,005) hin zu höheren arteriellen Laktatspiegeln (p = 0,019) während des 8‑stündigen Zeitintervalls vor Perikardiotomie. C‑Patienten hingegen wiesen keine signifikanten Veränderungen auf (p = 0,440 bzw. p = 0,279). Die PT-Gruppenzugehörigkeit ging mit einem längeren Krankenhausaufenthalt (p = 0,04) und einer höheren Mortalität im Krankenhaus einher (p = 0,008). Ein Abfall der SzvO2 unter 60 % (p = 0,018) sowie eine Reduktion der SzvO2 um >5 % (p = 0,001) und ein Laktatanstieg um >0,18 mmol/l (p = 0,002) während des genannten 8‑h-Intervalls waren ebenfalls mit einer postoperativen Perikardiotomie assoziiert. Die krankenhausinterne Mortalität wurde jedoch durch keinen dieser Parameter vorhergesagt.


Ein Abfall der SzvO2 könnte als frühpostoperativer Marker einer Perikardtamponade nach herzchirurgischen Eingriffen dienen.


Hämodynamik Sauerstoffverbrauch Perikardiotomie Reoperation Krankenhausmortalität 


Compliance with ethical guidelines

Conflict of interest

S. Saha, H. Baraki, I. Kutschka, and J. Hadem declare that they have no competing interests.

All patients consented to the cardiac surgery, postoperative treatment and data acquisition performed as part of routine patient care. All procedures described in this study were in accordance with the institutional research committee, national data safety regulations, and the 1964 Helsinki declaration and its last amendment by the 64th WMA General Assembly, Fortaleza, Brazil, October 2013. Informed patient consent was not required by the institutional research committee for this retrospective, noninterventional study.

Supplementary material

59_2017_4629_MOESM1_ESM.jpg (56 kb)
Supplementary Fig. 1: Kaplan–Meier survival curves (proportion of patients alive against time [days]) of 30 control versus 66 pericardial tamponade (PT) patients regarding decline of ScvO2 < 60% (a), postoperative acute kidney injury (AKI) (b), and re-thoracotomy for PT (c). Green curves indicate presence and blue curves indicate absence of the aforementioned criterion


  1. 1.
    Yazigi A, El Khoury C, Jebara S et al (2008) Comparison of central venous to mixed venous oxygen saturation in patients with low cardiac index and filling pressures after coronary artery surgery. J Cardiothorac Vasc Anesth 22:77–83. CrossRefPubMedGoogle Scholar
  2. 2.
    Bakker J, Nijsten MW, Jansen TC (2013) Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care 3:12. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Naik R, George G, Karuppiah S, Philip MA (2016) Hyperlactatemia in patients undergoing adult cardiac surgery under cardiopulmonary bypass: Causative factors and its effect on surgical outcome. Ann Card Anaesth 19:668–675. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Walley KR (2011) Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med 184:514–520. CrossRefPubMedGoogle Scholar
  5. 5.
    Balzer F, Sander M, Simon M et al (2015) High central venous saturation after cardiac surgery is associated with increased organ failure and long-term mortality: an observational cross-sectional study. Crit Care 19:168. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pearse R, Dawson D, Fawcett J et al (2005) Changes in central venous saturation after major surgery, and association with outcome. Crit Care 9:R694–R699. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Collaborative Study Group on Perioperative ScvO2 Monitoring (2006) Multicentre study on peri- and postoperative central venous oxygen saturation in high-risk surgical patients. Crit Care 10:R158. CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Carmona P, Mateo E, Casanovas I et al (2012) Management of cardiac tamponade after cardiac surgery. J Cardiothorac Vasc Anesth 26:302–311. CrossRefPubMedGoogle Scholar
  9. 9.
    Biancari F, Mikkola R, Heikkinen J et al (2012) Estimating the risk of complications related to re-exploration for bleeding after adult cardiac surgery: a systematic review and meta-analysis. Eur J Cardiothorac Surg 41:50–55. CrossRefPubMedGoogle Scholar
  10. 10.
    Kuvin JT, Harati NA, Pandian NG et al (2002) Postoperative cardiac tamponade in the modern surgical era. Ann Thorac Surg 74:1148–1153. CrossRefPubMedGoogle Scholar
  11. 11.
    Choong CK, Gerrard C, Goldsmith KA et al (2007) Delayed re-exploration for bleeding after coronary artery bypass surgery results in adverse outcomes. Eur J Cardiothorac Surg 31:834–838. CrossRefPubMedGoogle Scholar
  12. 12.
    Haneya A et al (2013) Impact of re-exploration for bleeding or tamponade on outcome after cardiac surgery. Thorac Cardiovasc Surg. CrossRefGoogle Scholar
  13. 13.
    Arrowsmith JE, Grocott HP, Reves JG, Newman MF (2000) Central nervous system complications of cardiac surgery. Br J Anaesth 84:378–393. CrossRefPubMedGoogle Scholar
  14. 14.
    Lopes JA, Jorge S (2013) The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin Kidney J 6:8–14. CrossRefPubMedGoogle Scholar
  15. 15.
    Levy B, Bastien O, Karim B et al (2015) Experts’ recommendations for the management of adult patients with cardiogenic shock. Ann Intensive Care 5:17. CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lo GK, Juhl D, Warkentin TE et al (2006) Evaluation of pretest clinical score (4 T’s) for the diagnosis of heparin-induced thrombocytopenia in two clinical settings. J Thromb Haemost 4:759–765. CrossRefPubMedGoogle Scholar
  17. 17.
    Hartog C, Bloos F (2014) Venous oxygen saturation. Best Pract Res Clin Anaesthesiol 28:419–428. CrossRefPubMedGoogle Scholar
  18. 18.
    van Beest P, Wietasch G, Scheeren T et al (2011) Clinical review: use of venous oxygen saturations as a goal—a yet unfinished puzzle. Crit Care 15:232. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Reinhart K, Kuhn H‑J, Hartog C, Bredle DL (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30:1572–1578. CrossRefPubMedGoogle Scholar
  20. 20.
    Perz S, Uhlig T, Kohl M et al (2011) Low and “supranormal” central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery patients: a prospective observational study. Intensive Care Med 37:52–59. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Department of Cardiothoracic SurgeryUniversity Clinic, Otto-von-Guericke-UniversitätMagdeburgGermany

Personalised recommendations