Advertisement

Effects of orthodontic force magnitude on cell apoptosis and RANKL-induced osteoclastogenesis

Studies in a rat model
  • S. KayaEmail author
  • M. Çifter
  • A. Çekici
  • V. Olgaç
  • H. İşsever
  • G. Işık
Original Article
  • 23 Downloads

Abstract

Purpose

The aim of this study was to evaluate the time course of orthodontic force-induced apoptosis and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in a rat model under light- and heavy-force conditions.

Methods

Male Wistar rats were divided into light-force (10 cN) and heavy-force (60 cN) groups (N = 28/group). Each group was divided into four time-course subgroups to evaluate all phases of orthodontic tooth movement. Mesialization appliances were placed on three united maxillary molars unilaterally and activated. Tooth movements were calculated, and periodontal ligament (PDL) widths were measured. Expression of Bax, Bcl‑2, caspase 3, caspase 9, and RANK–RANKL were assessed by immunohistochemistry. Expression levels at the PDL–alveolar bone border were compared between experimental and control groups and force groups.

Results

The rate of tooth movement did not differ between the force groups. PDL widths were higher on the tension side in the heavy-force group in the post-lag phase. Pro-apoptotic protein Bax expression was elevated in the heavy-force group, whereas anti-apoptotic protein Bcl‑2 expression was elevated in the light-force group. RANK expression on days 7 and 21 and RANKL expression on day 21 differed between the force groups.

Conclusions

Evidence of orthodontic force-induced apoptosis is more robust with stronger forces than with weaker forces. Exuberant RANKL-induced osteoclastogenesis that was seen when applying a low force results from increased RANK and RANKL expression in the post-lag phase.

Keywords

Orthodontic tooth movement Cell death Periodontal ligament Immunohistochemistry Osteoclastic activity 

Auswirkungen der kieferorthopädischen Kraftgröße auf Zellapoptose und RANKL-induzierte Osteoklastogenese

Untersuchungen am Rattenmodell

Zusammenfassung

Zielsetzung

Ziel dieser Studie war es, den zeitlichen Verlauf der durch kieferorthopädische Kräfte induzierten Apoptose und der RANKL(„receptor activator of nuclear factor κB ligand“)-induzierten Osteoklastogenese in einem Rattenmodell unter verschiedenen Kraftbedingungen zu untersuchen.

Methoden

Männliche Wistar-Ratten wurden je nach applizierter Kraft in 2 Gruppen unterteilt: geringere (10 cN) und höhere (60 cN; n = 28/Gruppe) Kräfte. Jede Gruppe wurde weiter in 4 Untergruppen unterteilt, um alle zeitlichen Phasen der kieferorthopädischen Zahnbewegung zu bewerten. Mesialisationsgeräte wurden auf 3 verblockten Oberkiefermolaren einseitig platziert und aktiviert. Zahnbewegungen wurden berechnet und die Breite des Parodontalligaments (PDL) gemessen. Die Expression von Bax, Bcl‑2, Caspase 3, Caspase 9 und RANK-RANKL wurde immunhistochemisch bestimmt. Die Expressionsniveaus an der PDL-Alveolarknochengrenze wurden zwischen Versuchs- und Kontroll- sowie zwischen den Kraftgruppen verglichen.

Ergebnisse

Die Geschwindigkeit der Zahnbewegung unterschied sich nicht zwischen den Kraftgruppen. Die PDL-Breiten waren auf der Spannungsseite in der 60-cN-Gruppe in der Post-lag-Phase höher. Die proapoptotische Protein-Bax-Expression war in der 60-cN-Gruppe erhöht, während die antiapoptotische Protein-Bcl-2-Expression in der 10-cN-Gruppe erhöht war. Die RANK-Expression an den Tagen 7 und 21 sowie die RANK-Expression an Tag 21 unterschieden sich zwischen den Kraftgruppen.

Schlussfolgerungen

Der Evidenznachweis einer kieferorthopädischen kraftinduzierten Apoptose ist bei stärkeren Kräften robuster als bei schwächeren. Die übermäßige RANKL-induzierte Osteoklastogenese, die bei Anwendung einer geringen Kraft zu beobachten war, resultiert aus einer erhöhten RANK- und RANKL-Expression in der Post-lag-Phase.

Schlüsselwörter

Kieferorthopädische Zahnbewegung Zelltod Periodontalligament Immunhistochemie Osteoklastische Aktivität 

Notes

Acknowledgements

No external funding, apart from the support of the authors’ institution, was available for this study.

Funding

This work was supported by Istanbul University Research Fund, project no. 32969.

Compliance with ethical guidelines

Conflict of interest

S. Kaya, M. Çifter, A. Çekici, V. Olgaç, H. İşsever and G. Işık declare that they have no competing interests.

Ethical standards

This study was approved by the Istanbul University Ethics Committee for Animal Research (2 January 2013, 2012/177). This study adhered to the Animal Research Reporting in Vivo Experiment guidelines. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

56_2019_205_MOESM1_ESM.pdf (73 kb)
Supplementary Table 1: Means, ranges (Min minimum and Max maximum) and standard deviations (Std dvt) for periodontal ligament (PDL) width. E experimental, C control
56_2019_205_MOESM2_ESM.pdf (92 kb)
Supplementary Table 2: Means, ranges (Min minimum and Max maximum) and standard deviations (Std dvt) for apoptosis pathway protein immunopositive cells count values on the pressure side. E experimental, C control
56_2019_205_MOESM3_ESM.pdf (92 kb)
Supplementary Table 3: Means, ranges (Min minimum and Max maximum) and standard deviations (Std dvt) for apoptosis pathway protein immunopositive cells count values on the tension side. E experimental, C control
56_2019_205_MOESM4_ESM.pdf (92 kb)
Supplementary Table 4: Means, ranges (Min minimum and Max maximum) and standard deviations (Std dvt) for RANK–RANKL immunopositive cells count values. E experimental, C control

References

  1. 1.
    Reitan K (1960) Tissue behavior during orthodontic tooth movement. Am J Orthod 46(12):881–900CrossRefGoogle Scholar
  2. 2.
    Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129(4):469.e1–469e32CrossRefGoogle Scholar
  3. 3.
    Rana MW, Pothisiri V, Killiany DM, Xu XM (2001) Detection of apoptosis during orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 119(5):516–521CrossRefGoogle Scholar
  4. 4.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516CrossRefGoogle Scholar
  5. 5.
    Yang C‑Y, Jeon HH, Alshabab A, Lee YJ, Chung C‑H, Graves DT (2018) RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement. Int J Oral Sci 10(1):3CrossRefGoogle Scholar
  6. 6.
    Van Leeuwen EJ, Maltha JC, Kuijpers-Jagtman AM (1999) Tooth movement with light continuous and discontinuous forces in beagle dogs. Eur J Oral Sci 107(6):468–474CrossRefGoogle Scholar
  7. 7.
    Von Böhl M, Maltha J, Von den Hoff H, Kuijpers-Jagtman AM (2004) Changes in the periodontal ligament after experimental tooth movement using high and low continuous forces in beagle dogs. Angle Orthod 74(1):16–25Google Scholar
  8. 8.
    Owman-Moll P, Kurol J, Lundgren D (1996) Effects of a doubled orthodontic force magnitude on tooth movement and root resorptions. An inter-individual study in adolescents. Eur J Orthod 18(2):141–150CrossRefGoogle Scholar
  9. 9.
    Ren Y, Maltha JC, Kuijpers-Jagtman AM (2004) The rat as a model for orthodontic tooth movement—a critical review and a proposed solution. Eur J Orthod 26(5):483–490CrossRefGoogle Scholar
  10. 10.
    Ren Y, Maltha JC, Van ’t Hof MA, Kuijpers-Jagtman AM (2003) Age effect on orthodontic tooth movement in rats. J Dent Res 82(1):38–42CrossRefGoogle Scholar
  11. 11.
    Verna C, Zaffe D, Siciliani G (1999) Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone 24(4):371–379CrossRefGoogle Scholar
  12. 12.
    Brooks PJ, Nilforoushan D, Manolson MF, Simmons CA, Gong S‑G (2009) Molecular markers of early orthodontic tooth movement. Angle Orthod 79(6):1108–1113CrossRefGoogle Scholar
  13. 13.
    Korb K, Katsikogianni E, Zingler S, Daum E, Lux CJ, Hohenstein A et al (2016) Inhibition of AXUD1 attenuates compression-dependent apoptosis of cementoblasts. Clin Oral Invest 20(9):2333–2341CrossRefGoogle Scholar
  14. 14.
    Kirschneck C, Proff P, Fanghaenel J, Behr M, Wahlmann U, Roemer P (2013) Differentiated analysis of orthodontic tooth movement in rats with an improved rat model and three-dimensional imaging. Ann Anat Anat Anz 195(6):539–553CrossRefGoogle Scholar
  15. 15.
    Kaipatur N, Major P, Stevenson T, Pehowich D, Adeeb S, Doschak M (2015) Impact of selective alveolar decortication on bisphosphonate burdened alveolar bone during orthodontic tooth movement. Arch Oral Biol 60(11):1681–1689CrossRefGoogle Scholar
  16. 16.
    AlSwafeeri H, ElKenany W, Mowafy M, Karam S (2018) Effect of local administration of simvastatin on postorthodontic relapse in a rabbit model. Am J Orthod Dentofacial Orthop 153(6):861–871CrossRefGoogle Scholar
  17. 17.
    von Bohl M, Maltha JC, Von Den Hoff JW, Kuijpers-Jagtman AM (2004) Focal hyalinization during experimental tooth movement in beagle dogs. Am J Orthod Dentofacial Orthop 125(5):615–623CrossRefGoogle Scholar
  18. 18.
    Kondo K (1969) A study of blood circulation in theperiodontal membrane by electrical impedance plethysmorgraphy. Kokubyo Gakkai Zassi 36:20–42CrossRefGoogle Scholar
  19. 19.
    Kogure K, Noda K (2009) Periodontal response to experimental tooth movement by interrupted orthodontic force in rats. Orthod Waves 68(3):97–106CrossRefGoogle Scholar
  20. 20.
    Li Y, Zheng W, Liu J‑S, Wang J, Yang P, Li M‑L et al (2011) Expression of osteoclastogenesis inducers in a tissue model of periodontal ligament under compression. J Dent Res 90(1):115–120CrossRefGoogle Scholar
  21. 21.
    Kanzaki H, Chiba M, Arai K, Takahashi I, Haruyama N, Nishimura M et al (2006) Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther 13(8):678CrossRefGoogle Scholar
  22. 22.
    Li X, Zhang XL, Shen G, Tang GH (2012) Effects of tensile forces on serum deprivation-induced osteoblast apoptosis: expression analysis of caspases, Bcl‑2, and Bax. Chin Med J 125(14):2568–2573PubMedGoogle Scholar
  23. 23.
    Moin S, Kalajzic Z, Utreja A, Nihara J, Wadhwa S, Uribe F et al (2014) Osteocyte death during orthodontic tooth movement in mice. Angle Orthod 84(6):1086–1092CrossRefGoogle Scholar
  24. 24.
    Goga Y, Chiba M, Shimizu Y, Mitani H (2006) Compressive force induces osteoblast apoptosis via caspase‑8. J Dent Res 85(3):240–244CrossRefGoogle Scholar
  25. 25.
    Matsuzawa H, Toriya N, Nakao Y, Konno-Nagasaka M, Arakawa T, Okayama M et al (2017) Cementocyte cell death occurs in rat cellular cementum during orthodontic tooth movement. Angle Orthod 87(3):416–422CrossRefGoogle Scholar
  26. 26.
    Rodrigues LV, Del Puerto HL, Brant JM, Leite RC, Vasconcelos AC (2012) Caspase-3/caspase‑8, bax and bcl2 in pulps of human primary teeth with physiological root resorption. Int J Paediatr Dent 22(1):52–59CrossRefGoogle Scholar
  27. 27.
    Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2(4):277–288CrossRefGoogle Scholar
  28. 28.
    Ikeda F, Matsubara T, Tsurukai T, Hata K, Nishimura R, Yoneda T (2008) JNK/c-Jun signaling mediates an anti-apoptotic effect of RANKL in osteoclasts. J Bone Miner Res 23(6):907–914CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PeriodontologyOkan University Faculty of DentistryIstanbulTurkey
  2. 2.Department of PeriodontologyIstanbul University Faculty of DentistryIstanbulTurkey
  3. 3.Department of OrthodonticsIstanbul University Faculty of DentistryIstanbulTurkey
  4. 4.Department of Tumor Pathology and CytologyIstanbul University Institute of OncologyIstanbulTurkey
  5. 5.Public HealthIstanbul UniversityIstanbulTurkey

Personalised recommendations