Advertisement

Effect of arch wire size on orthodontic reverse closing loop and retraction force in canine tooth distalization

Three-dimensional finite element analysis
  • Suleyman Kutalmış Buyuk
  • Mehmet Sami Guler
  • Muhammed Latif Bekci
Original Article
  • 31 Downloads

Abstract

Aim

The purpose of this study is to compare the effects of different wire size reverse closing loop and retraction forces in canine tooth distalization using the finite element analysis method.

Materials and methods

Maxillary alveolar bone, maxillary first molar, second premolar and canine teeth were constructed in three dimensions along with their periodontal ligaments and standard edgewise brackets of 0.022 inch and stainless-steel reverse closing loop of 0.016 × 0.022 inch and 0.019 × 0.025 inch were designed. Force of 0.98 N and 1.96 N were applied to the arch wire from the posterior region of the molar tooth in the distal direction for activating the reverse closing loop. The stress distribution and displacement of the maxillary canine tooth were performed using the three-dimensional finite element analysis method.

Results

The maximum deformation on the canine tooth was higher in the x‑, y‑, and z‑axes in both arch wires with 1.96 N force activation. Moreover, 1.96 N caused more stress on the canine tooth in both arch wires compared to the application of 0.98 N. In terms of von Mises stress distribution on alveolar bones, the amount of stress was higher during the application of 1.96 N than the application of 0.98 N.

Conclusion

The finite element method is a reliable instrument which allows the effects of biomechanics applied in orthodontics to be evaluated. The finite element analysis method precisely predicted the mechanical effects of reverse closing loop of different wire sizes and different retraction forces.

Keywords

Finite element analysis Orthodontic wire Force magnitude Canine distalization Tooth movement 

Einfluss der Bogendimension auf die Retraktionskraft von Reverse-Closing-Loops bei der Eckzahndistalisierung

Dreidimensionale Finite-Elemente-Analyse

Zusammenfassung

Ziel

Ziel der vorliegenden Studie war es, die Auswirkungen unterschiedlicher Bogendimensionen auf die Retraktionskräfte von Reverse-Closing-Loops mittels Finite-Elemente-Analyse zu vergleichen.

Material und Methoden

Alveolarknochen des Oberkiefers, erster oberer Molar, zweiter oberer Prämolar und obere Eckzähne wurden dreidimensional mit Paradontalligamenten und Standard Edgewise Brackets (22er Slotsystem) und Edelstahl Reverse Closing Loops (0,016 ×  0,022 Zoll und 0,019 × 0,025 Zoll) konstruiert. Auf den Bogendraht wurden von der Molarenregion aus in distaler Richtung Kräfte von 0,98 N und 1,96 N aufgebracht, um den Reverse-Closing-Loop zu aktivieren. Die Spannungsverteilung und -verschiebung des oberen Eckzahnes wurde mit der dreidimensionalen Finite-Elemente-Methode evaluiert.

Ergebnisse

Die maximale Verformung am Eckzahn war in der x‑, y‑ und z‑Achse bei beiden Bogendimensionen nach 1,96-N-Aktivierung erhöht. Darüber hinaus verursachte die Anwendung von 1,96 N bei beiden Bogendimensionen eine höhere Belastung des Eckzahnes als die Kraftapplikation von 0,98 N. In Bezug auf die Von-Mises-Spannungsverteilung auf den Alveolarknochen war die Belastung bei der Anwendung von 1,96 N höher als bei der Anwendung von 0,98 N.

Fazit

Die Finite-Elemente-Methode ist eine zuverlässige Methodik, mit dem sich die Auswirkungen orthodontisch induzierter Kraftsysteme bewerten lassen. Mit dem Finite-Elemente-Modell ließen sich die Effekte verschiedener Drahtdimensionen auf die Retraktionskräfte von bei Reverse-Closing-Loops präzise vorhersagen.

Schlüsselwörter

Finite-Elemente-Analyse Kieferorthopädischer Bogen Kraftgröße Eckzahndistalisierung Zahnbewegung 

Notes

Funding

The authors have no financial relationship with the organization that sponsored the research.

Conflict of interest

S.K. Buyuk, M.S. Guler and M.L. Bekci declare that they have no competing interests.

References

  1. 1.
    Canales C, Larson M, Grauer D, Sheats R, Stevens C, Ko CC (2013) A novel biomechanical model assessing continuous orthodontic archwire activation. Am J Orthod Dentofacial Orthop 143:281–290CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Chang YI, Shin SJ, Baek SH (2004) Three-dimensional finite element analysis in distal en masse movement of the maxillary dentition with the multiloop edgewise archwire. Eur J Orthod 26:339–345CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Heo GH, Cha GS, Ju JW (2000) Finite element modeling and mechanical analysis of orthodontics. Trans Korean Soc Mech Eng A 24:907–915Google Scholar
  4. 4.
    Holberg C, Winterhalder P, Holberg N, Rudzki-Janson I, Wichelhaus A (2013) Direct versus indirect loading of orthodontic miniscrew implants-an FEM analysis. Clin Oral Investig 17:1821–1827CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kim MJ, Park JH, Kojima Y, Tai K, Chae JM (2018) A finite element analysis of the optimal bending angles in a running loop for mesial translation of a mandibular molar using indirect skeletal anchorage. Orthod Craniofac Res 21:63–70CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ko CC, Rocha EP, Larson M (2012) Past, present, and future of finite element analysis in dental biomechanics. In: Moratal D (ed) Finite element analysis—from biomedical applications to industrial developments. Intech Open, LondonGoogle Scholar
  7. 7.
    Macginnis M, Chu H, Youssef G, Wu KW, Machado AW, Moon W (2014) The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex—a finite element method (FEM) analysis. Prog Orthod 15:52CrossRefGoogle Scholar
  8. 8.
    Nienkemper M, Wilmes B, Pauls A, Drescher D (2014) Mini-implant stability at the initial healing period: A clinical pilot study. Angle Orthod 84:127–133CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Papageorgiou SN, Keilig L, Vandevska-Radunovi CV, Eliades T, Bourauel C (2017) Torque differences due to the material variation of the orthodontic appliance: A finite element study. Prog Orthod 18:6CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Park HS, Bae SM, Kyung HM, Sung JH (2001) Micro-implant anchorage for treatment of skeletal Class I bialveolar protrusion. J Clin Orthod 35:417–422PubMedPubMedCentralGoogle Scholar
  11. 11.
    Perillo L, Jamilian A, Shafieyoon A, Karimi H, Cozzani M (2015) Finite element analysis of miniscrew placement in mandibular alveolar bone with varied angulations. Eur J Orthod 37:56–59CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sung EH, Kim SJ, Chun YS, Park YC, Yu HS, Lee KJ (2015) Distalization pattern of whole maxillary dentition according to force application points. Korean J Orthod 45:20–28CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Techalertpaisarn P, Versluis A (2016) T‑loop force system with and without vertical step using finite element analysis. Angle Orthod 86:372–379CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Xue J, Ye N, Yang X, Wang S, Wang J, Wang Y, Li J, Mi C, Lai W (2014) Finite element analysis of rapid canine retraction through reducing resistance and distraction. J Appl Oral Sci 22:52–60CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Suleyman Kutalmış Buyuk
    • 1
  • Mehmet Sami Guler
    • 2
  • Muhammed Latif Bekci
    • 3
  1. 1.Department of Orthodontics, Faculty of DentistryOrdu UniversityOrduTurkey
  2. 2.Department of Machinery Metal Technologies, Vocational School of Technical SciencesOrdu UniversityOrduTurkey
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations