, Volume 29, Issue 4, pp 171–178 | Cite as

3-Methyl-1-(methylthio)-2-butene: a component in the foul-smelling defensive secretion of two Ceroglossus species (Coleoptera: Carabidae)

  • Sihang Xu
  • Ramu Errabeli
  • Kipling Will
  • Elizabeth Arias
  • Athula B. AttygalleEmail author
Original Article


A sulfur-containing compound causes the foul smell of the defensive pygidial gland fluid of Ceroglossus buqueti Laporte and Ceroglossus magellanicus Gehin. This compound was identified as 3-methyl-1-(methylthio)-2-butene by a comparison of its mass spectrum, and chromatographic properties with those of a chemically synthesized standard. Although a few sulfur compounds are known from insect secretions, this sulfur-bearing isoprene derivative has not been characterized previously from any arthropod source. Additional components in the defensive section include acetic, propanoic, isobutyric, butanoic, methacrylic, ethacrylic, tiglic and benzoic acids, and 11-tricosene. Samples prepared from specimens of Ceroglossus chilensis Eschscholtz showed methacrylic, ethacrylic, and other acids. However, 3-methyl-1-(methylthio)-2-butene was not detected in the defensive fluid of C. chilensis.


Defensive secretion Methacrylic acid Tiglic acid Ceroglossus buqueti and Ceroglossus magellanicus Ceroglossus chilensis 3-Methyl-1-(methylthio)-2-butene Methyl prenyl sulfide Sulfur-containing natural products 



We thank Pablo Wagner from Flor del Lago for his assistance with Ceroglossus specimen collections. We acknowledge financial support from the Natural Science Foundation (NSF) Grants 1556898 (ABA) and 1556957 (KW).

Supplementary material

49_2019_286_MOESM1_ESM.docx (210 kb)
Supplementary material 1 (DOCX 210 kb)


  1. Andersen K, Bernstein DT (1975) Some chemical constituents of the scent of the striped skunk (Memphitis memphitis). J Chem Ecol 1:493–499CrossRefGoogle Scholar
  2. Attygalle AB (1998) Microchemical techniques. In: Millar J, Haynes K (eds) Methods in chemical ecology. Chapman and Hall, London, pp 207–281Google Scholar
  3. Attygalle AB, Morgan ED (1984) Chemicals from the glands of ants. Chem Soc Reviews 13:245–278CrossRefGoogle Scholar
  4. Attygalle AB, Meinwald J, Eisner T (1991) Biosynthesis of methacrylic and isobutyric acids in a carabid beetle, Scarites subterraneus. Tetrahedron Lett 32:4489–4852CrossRefGoogle Scholar
  5. Attygalle AB, Wu X, Ruzicka J, Rao S, Garcia S, Herath K, Meinwald J, Maddison D, Will KW (2004) Defensive Chemicals of two species of Trachypachus motschulski (Coleoptera: Trachypachidae). J Chem Ecol 30:577–588CrossRefGoogle Scholar
  6. Attygalle AB, Wu X, Will KW (2007) Biosynthesis of tiglic, ethacrylic, and 2-methylbutyric acids in a carabid beetle, Pterostichus (Hypherpes) californicus. J Chem Ecol 33:963–970CrossRefGoogle Scholar
  7. Benítez H, Briones R, Viviane JV (2011) Intra and inter-population morphological variation of shape and size of the Chilean magnificent beetle, Ceroglossus Chilensis in the Baker river basin, Chilean Patagonia. J Insect Sci 11:94–103CrossRefGoogle Scholar
  8. Benn MH, Lencucha A, Maxie S, Telang SA (1973) The pygidial defensive secretion of Carabus taedatus (Col. Carabidae). J Insect Physiol 19:2173–2176CrossRefGoogle Scholar
  9. Block E, Zhuang H (2013) Smelling sulfur: discovery of a sulfur-sensing olfactory receptor that requires copper. In: Biochalcogen chemistry: the biological chemistry of sulfur, selenium, and tellurium; ACS Symposium Series; American Chemical Society: Washington, DC, 1152, pp 1–14Google Scholar
  10. Blum MS (1981) Chemical defenses of arthropods. Academic Press, New YorkGoogle Scholar
  11. Bousquet Y (2012) Catalogue of Geadephaga (Coleoptera, Adephaga) of America, North of Mexico. ZooKeys 245:1–1722CrossRefGoogle Scholar
  12. Butovsky RO (1992) Sulfur compounds and entomofauna. Agrokhimiya (1):159–168Google Scholar
  13. Byers JA (2015) Earwigs (Labidura riparia) mimic rotting-fresh odor to deceive vertebrate predators. Naturwissenschaften 102:1–10CrossRefGoogle Scholar
  14. Casnati G, Ricca A, Pavan M (1967) Defensive secretion of the mandibular glands of Paltothyreus tarsatus. Chim Ind (Milan, Italy) 49:57–58Google Scholar
  15. Das S, Das S, Sherpa MT, Thakur N (2018) Is sulfur compounds are hidden chemoattractant for insects? Exp Find 25:4. Google Scholar
  16. Dazzini-Valcurone M, Pavan M (1980) Glandole Pigidiali e Secrezioni Difensive Dei Carabidae (Insecta Coleoptera). Pubblicazioni Dell’Istituto Di Entomologia Dell’Universita Di Pavia 12:1–36Google Scholar
  17. Dettner K (1985) Ecological and phylogenetic significance of defensive compounds from pygidial glands of Hydradephaga (Coleoptera). Proc Acad Natl Sci Phil 137:156–171Google Scholar
  18. Dettner K (1987) Chemosystematics and evolution of beetle chemical defenses. Ann Rev Entomol 32:17–48CrossRefGoogle Scholar
  19. Dettner K (1990) Chemische Abwehr bei der ursprunglichen Käferfamilie der Amphizoidae—ein Beitrag zur Evolution der Pygidialdruse der Hydradephaga. Mitteilungen der Deutschen Gesellschaft fuer Allgemeine und Angewandte Entomologie 7:519–526Google Scholar
  20. Eisner T, Swithenbank C, Meinwald J (1963) Defense mechanisms of arthropods. VIII. Secretion of salicylaldehyde by a carabid beetle. Ann Entomol Soc Am 56:37–41CrossRefGoogle Scholar
  21. Frank ET, Schmitt T, Hovestadt T, Mitesser O, Stiegler J, Linsenmair KE (2017) Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis. Sci Adv 3:e1602187CrossRefGoogle Scholar
  22. Giglio A, Brandmayr P, Dalpozzo R, Sindona G, Tagarelli A, Talarico F, Brandmayr TZ, Ferrero E (2009) The defensive secretion of Carabus lefebvrei Dejean 1826 pupa (Coleoptera, Carabidae): gland ultrastructure and chemical identification. Microsc Res Tech 72:351–361CrossRefGoogle Scholar
  23. Ishikawa Y (1983) Insects and secondary compounds of plants. Kagaku to Seibutsu 21:594–601CrossRefGoogle Scholar
  24. Jiroux E (1996) Revision du genre Ceroglossus. Collection Systematique, vol 1. Magellanes, Ver-neuil-sur-SeineGoogle Scholar
  25. Jiroux E (2006) Le genre Ceroglossus. Collection Systematique, vol 14. Magellanes, Verneuil-sur-SeineGoogle Scholar
  26. Kanehisa K, Kawazu K (1982) Fatty acid components of the defensive substances in acid-secreting carabid beetles. Appl Ent Zool 17:460–466CrossRefGoogle Scholar
  27. Keegans SJ, Billen J, Morgan ED, Gokcen OA (1993) Volatile glandular secretions of three species of new world army ants, Labidus coecus, and Labidus praedator. J Chem Ecol 19:2705–2719CrossRefGoogle Scholar
  28. Lecic S, Curcic S, Vujisic L, Curcic B, Curci N, Nikolic Z, Andelkovic B, Milosavljevic S, Teševic V, Makarov S (2014) Defensive secretions in three ground-beetle species (Insecta: Coleoptera: Carabidae). Ann Zool Fennici 51:285–300CrossRefGoogle Scholar
  29. Longhurst C, Baker R, Howse PE (1979) Termite predation by Megaponera foetens (Fab.) (Hymenoptera: Formicidae). Coordination of raids by glandular secretions. J Chem Ecol 5:703–719CrossRefGoogle Scholar
  30. Meinwald J, Eisner T (1995) The chemistry of phyletic dominance. In: Meinwald J, Eisner T (eds) Chemical ecology: the chemistry of biotic interaction. National Academy Press, Washington, D.C., pp 29–40Google Scholar
  31. Michelot D, Linstrumelle G, Julia S (1977) Synthesis of 2,5,5-trimethylhepta-2,6-dien-4-one (artemisia ketone). I. Using a rearrangement of an intermediate sulfonium ylide. Syn Commun 7:95–102CrossRefGoogle Scholar
  32. Moir M, Gallacher IM, Seaton JC, Suggett A (1980) Terpene methyl sulfides in the essential oil of hops. Chem Ind (London, UK) 15:624–625Google Scholar
  33. Moore BP, Brown WV (1979) Chemical composition of the defensive secretion in Dyschirius Bonelli (Coleoptera: Carabidae: Scaritinae) and its taxonomic significance. J Austr Entomol Soc 18:123–125CrossRefGoogle Scholar
  34. Moore BP, Wallbank BE (1968) Chemical composition of the defensive secretion in carabid beetles and its importance as a taxonomic character. Proc R Ent Soc Lond (B) 37:62–72Google Scholar
  35. Morgan ED (2004) Biosynthesis in Insects. RSC Publishing, CambridgeGoogle Scholar
  36. Muñoz-Ramírez C (2015) The phylogenetic position of Ceroglossus Ochsenii Germain and Ceroglossus Guerini Germain (Coleoptera: Carabidae), two endemic ground beetles from the Valdivian forest of Chile. Revista Chilena de Entomología 40:14–21Google Scholar
  37. Okamoto M, Kashiwai N, Su ZH, Osawa S (2001) Sympatric convergence of the color pattern in the Chilean Ceroglossus ground beetles inferred from sequence comparisons of the mitochondrial ND5 gene. J Mol Evolut 53:530–538CrossRefGoogle Scholar
  38. Oswald AA, Griesbaum K, Thaler WA, Hudson BE Jr (1962) Organic sulfur compounds. VIII. Addition of thiols to conjugated diolefins. J Am Chem Soc 84:3897–3904CrossRefGoogle Scholar
  39. Prüser F, Mossakowski D (1998) Conflicts in phylogenetic relationships and dispersal history of the supertribe Carabitae (Coleoptera: Carabidae). In: Ball GE, Casale A, Vigna Taglianti A (eds) Phylogeny and classification of Caraboidea (Coleoptera: Adephaga). Proceedings of a symposium (28 August, 1996, Florence, Italy) XX International Congress of Entomology. Museo Regionale di Scienze Naturali, Torino. p 543Google Scholar
  40. Rizzi GP (1995) Formation of sulfur-containing flavor compounds from allylic alcohol precursors. Dev Food Sci 37A:289–302CrossRefGoogle Scholar
  41. Roussel Uclaf SA (1966) Cyclic sulfones. Patent NL 6508580Google Scholar
  42. Seaton JC, Suggett A, Moir M (1981) The flavor contribution of sulfur compounds in hops. Tech Q Master Brewers Assoc Am 18:26–30Google Scholar
  43. Šiaučiulis M, Sapmaz S, Pulis AP, Procter DJ (2018) Dual vicinal functionalisation of heterocycles via an interrupted Pummerer coupling/[3,3]-sigmatropic rearrangement cascade. Chem Sci 9:754–759CrossRefGoogle Scholar
  44. Su Z-H, Imura Y, Okamoto M, Osawa S (2004) Pattern of phylogenetic diversification of the Cychrini ground beetles in the world as deduced mainly from sequence comparisons of the mitochondrial genes. Gene 326:43–57CrossRefGoogle Scholar
  45. Thibout E, Lecomte C, Auger J (1996) Sulfur substances in Allium and insects. Acta Botanica Gallica 143:137–142CrossRefGoogle Scholar
  46. Verts BJ (1967) The biology of the striped skunk. University of Illinois Press, UrbanaGoogle Scholar
  47. Waterhouse DF, Wallbank BE (1967) 2-Methylene butanal and related compounds in the defensive scent of Platyzosteria cockroaches. J Insect Physiol 13:1657–1669CrossRefGoogle Scholar
  48. Will KW (2000) Systematics and zoogeography of Abaryform genera (Coleoptera: Carabidae: Pterostichini), and a phylogenetic hypothesis for pterostichine genera. PhD dissertation. Cornell University, Ithaca, New York, p 289Google Scholar
  49. Will KW, Attygalle AB, Herath K (2000) New defensive chemical data for ground beetles (Coleoptera: Carabidae): Interpretations in a phylogenetic framework. Biol J Linn Soc 71:459–481CrossRefGoogle Scholar
  50. Wood WF (1990) New components in defensive secretion of the striped skunk, Mephitis mephitis. J Chem Ecol 16:2057–2065CrossRefGoogle Scholar
  51. Zhang J-X, Sun L, Zhang Z-B, Wang Z-W, Chen Y, Wang R (2002) Volatile compounds in anal glands of Siberian weasels (Mustela sibirica) and Steppe polecats (M. eversmanni). J Chem Ecol 28:1287–1297CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Biology, Center for Mass SpectrometryStevens Institute of TechnologyHobokenUSA
  2. 2.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA
  3. 3.Essig Museum of EntomologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations