Design, synthesis, and antitumor evaluation of novel naphthalimide derivatives

  • Xin Li
  • Zheng Wu
  • Lu Xu
  • Chun-Lan Chi
  • Bao-Quan ChenEmail author
Original Research


In order to research the structure–activity relationships of novel naphthalimide derivatives bearing disulfide bond toward antitumor activity, we prepared a series of those and their in vitro antiproliferative activities were screened against human cancer cell lines A549, Hela, SMMC-7721, and normal cell lines L929 by CCK-8 assay. After testing, most of synthesized compounds 5a-i, 6a-i showed better antitumor activity than the positive control 5-fluorouracil. Compounds 5b, 5f, and 5i showed excellent antitumor activity against Hela cells with IC50 values of 3.64, 3.67, and 3.57 µM, respectively. Compounds 5a, 5b, and 5i exhibited good biological activity to A549 cells with IC50 values of 5.25, 6.20, and 5.50 respectively. Compared with 5-fluorouracil, all of synthesied compounds showed low cytotoxic effects on normal human cell line L929.


1,8-Naphthalimide Synthesis Disulfides; Antiproliferative activities 



We are grateful to the Tianjin Municipal Natural Science Foundation (18JCYBJC94900) and Training Project of Innovation Team of Colleges and Universities in Tianjin (TD13-5020) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2019_2471_MOESM1_ESM.docx (5.3 mb)
Supplementary Information


  1. Abo-Bakr AM, Hashem HE (2019) New 1,3,4-thiadiazole derivatives: synthesis, characterization, and antimicrobial activity. J Heterocycl Chem 56:1038–1047CrossRefGoogle Scholar
  2. Adhikari S, Ta S, Ghosh A, Guria S, Pal A, Ahir M, Adhikary A, Hira SK, Manna PP, Das D (2019) A 1,8 naphthalimide anchor rhodamine B based FRET probe for ratiometric detection of Cr 3+ ion in living cells. J Photochem Photobio A 372:49–58CrossRefGoogle Scholar
  3. Al-Salahi R, Alswaidan I, Ghabbour HA, Ezzeldin E, Elaasser M, Marzouk M (2015) Docking and antiherpetic activity of 2-aminobenzo[de]-isoquinoline-1,3-diones. Molecules 20:5099–5111PubMedPubMedCentralCrossRefGoogle Scholar
  4. Banerjee S, Veale EB, Phelan CM, Murphy SA, Tocci GM, Gillespie LJ, Frimannsson DO, Kelly JM, Gunnlaugsson T (2013) Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem Soc Rev 42:1601–1618PubMedCrossRefGoogle Scholar
  5. Cesarini S, Spallarossa A, Ranise A, Schenone S, Bruno O, Colla PL, Casula L, Collu G, Sanna G, Loddo R (2008) Parallel one-pot synthesis and structure–activity relationship study of symmetric formimidoester disulfides as a novel class of potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem 16:6353–6363PubMedCrossRefGoogle Scholar
  6. Dewangan D, Nakhate KT, Verma VS, Nagori K, Tripathi DK (2017) Synthesis, characterization, and screening for analgesic and anti-Inflammatory activities of schiff aases of 1,3,4-oxadiazoles linked with quinazolin-4-one. J Heterocycl Chem 54:3187–3194CrossRefGoogle Scholar
  7. El-Azab AS, Alanazi AM, Abdel-Aziz NI, Al-Suwaidan IA, El-Sayed MA, El-Sherbeny MA, Abdel-Aziz AA (2013) Synthesis, molecular modeling study, preliminary antibacterial, and antitumor evaluation of N-substituted naphthalimides and their structural analogue. Med Chem Res 22:2360–2375CrossRefGoogle Scholar
  8. Freitas RHCN, Cordeiro NM, Carvalho PR, Alves MA, Guedes IA, Valerio TS, Dardenne LE, Lima LM, BArreiro EJ, Fernandes PD, Fraga GAM (2018) Discovery of naphthyl-N- acylhydrazone p38α MAPK inhibitors with in vivo anti-inflammatory and anti-TNF-α activity. Chem Biol Drug Des 91:391–397PubMedCrossRefGoogle Scholar
  9. Gancedo AG, Fernández CG, Vilas P, Perez S, Paez E, Rodriguez F, Braña MF, Roldán CM (1982) Imide derivatives of 3-nitre-l.8-naphthalic acid: their inhibitory activity against DNA viruses. Arch Virol 74:157–165CrossRefGoogle Scholar
  10. Ghane T, Nozaki D, Dianat A, Vladyka A, Gutierrez R, Chinta JP, Yitzchaik S, Calame M, Cuniberti G (2015) Interplay between Mechanical and Electronic Degrees of Freedom in π-stacked molecular junctions: from single molecules to mesoscopic nanoparticle networks. J Phys Chem C 119:6344–6355CrossRefGoogle Scholar
  11. Gomha SM, Muhammad ZA, Gaber HM, Amin MM (2017) Synthesis of some novel heterocycles bearing thiadiazoles as potent anti-inflammatory and analgesic agents. J Heterocycl Chem 54:2708–2716CrossRefGoogle Scholar
  12. Hamama WS, Ibrahim ME, Gooda AA, Zoorob HH (2018) Efficient synthesis, antimicrobial, antioxidant assessments and geometric optimization calculations of azoles-incorporating quinoline moiety. J Heterocycl Chem 55:2623–2634CrossRefGoogle Scholar
  13. Jasiak K, Kudelko A, Wróblowska M, Biernasiuk A, Malm A, Krawczyk M (2017) Convenient synthesis and biological activity of mono and diacyl 2,5-dimercapto-1,3,4-thiadiazole derivatives. J Heterocycl Chem 54:3241–3249CrossRefGoogle Scholar
  14. Kamal A, Adil SF, Tamboli JR, Siddardha B, Murthy USN (2009) Synthesis of coumarin linked naphthalimide conjugates as potential anticancer and antimicrobial agents. Lett Drug Des Discov 6:201–209CrossRefGoogle Scholar
  15. Kassab AE, Gedawy EM, El-Nassan HB (2017) Synthesis of 4-heteroaryl-quinazoline derivatives as potential anti-breast cancer agents. J Heterocycl Chem 54:624–633CrossRefGoogle Scholar
  16. Kollár J, Hrdlovič P, Chmela Š, Sarakha M, Guyot G (2005) Synthesis and transient absorption spectra of derivatives of 1,8-naphthalic anhydrides and naphthalimides containing 2,2,6,6-tetramethylpiperidine; triplet route of deactivation. J Photochem Photobio A 170:151–159CrossRefGoogle Scholar
  17. Kumar S, Kumar G, Tripathi AK, Seena S, Koh J (2018) Enhanced fluorescence norfloxacin substituted naphthalimide derivatives: Molecular docking and antibacterial activity. J Mol Struct 1157:292–299CrossRefGoogle Scholar
  18. Li SH, Xu SJ, Tang YH, Ding S, Zhang JC, Wang SX, Zhou GQ, Zhou CQ, Li XL (2014) Synthesis, anticancer activity and DNA-binding properties of novel 4-pyrazolyl-1,8-naphthalimide derivatives. Bioorg Med Chem Lett 24:586–590PubMedCrossRefPubMedCentralGoogle Scholar
  19. Li XL, Lin YJ, Wang QQ, Yuan YK, Zhang H, Qian XH (2011) The novel anti-tumor agents of 4-triazol-1,8-naphthalimides: Synthesis, cytotoxicity, DNA intercalation and photocleavage. Eur J Med Chem 46:1274–1279PubMedCrossRefPubMedCentralGoogle Scholar
  20. Li ZS, Wang WM, Lu W, Niu CW, Li YH, Li ZM, Wang JG (2013) Synthesis and biological evaluation of nonsymmetrical aromatic disulfides as novel inhibitors of acetohydroxyacid synthase. Bioorg Med Chem Lett 23:3723–3727PubMedCrossRefGoogle Scholar
  21. Liu HY, Wang HX, Li X, Wu Z, Li CW, Liu YM, Li W, Chen BQ (2018) Synthesis, antitumor and antimicrobial evaluation of novel 1,3,4-thiadiazole derivatives bearing disulfide bond. Med Chem Res 27:1929–1940CrossRefGoogle Scholar
  22. Mochona B, Jackson T, McCauley D, Mazzio E, Redda KK (2016) synthesis and cytotoxic evaluation of pyrrole hetarylazoles containing benzimidazole/pyrazolone/1,3,4-oxadiazole motifs. J Heterocycl Chem 53:1871–1877PubMedCrossRefGoogle Scholar
  23. Muth M, Hoerr V, Glaser M, Ponte-Sucer A, Moll H, Stich A, Holzgrabe U (2007) Antitrypanosomal activity of quaternary naphthalimide derivatives. Bioorg Med Chem Lett 17:1590–1593PubMedCrossRefGoogle Scholar
  24. Ott I, Xu YF, Liu JW, Kokoschka M, Harlos M, Sheldrick WS, Qian XH (2008) Sulfur-substituted naphthalimides as photoactivatable anticancer agents: DNA interaction, fluorescence imaging, and phototoxic effects in cultured tumor cells. Bioorg Med Chem 16:7107–7116PubMedCrossRefGoogle Scholar
  25. Patil SR, Sarkate AP, Karnik KS, Arsondkar A, Patil V, Sangshetti JN, Bobade AS, Shinde DB (2019) A facile synthesis of substituted 2-(5-(benzylthio)-1,3,4-oxadiazol-2-yl) pyrazine using microwave irradiation and conventional method with antioxidant and anticancer activities. J Heterocycl Chem 56:859–866CrossRefGoogle Scholar
  26. Ponte-Sucre A, Bruhn H, Schirmeister T, Cecil A, Albert CR, Buechold C, Tischer M, Schlesinger S, Goebel T, Fuß A, Mathein D, Merget B, Sotriffer CA, Stich A, Krohne G, Engstler M, Bringmann G, Holzgrabe U (2014) Anti-trypanosomal activities and structural chemical properties of selected compound classes. Parasitol Res 114:501–512PubMedCrossRefGoogle Scholar
  27. Roldán-Peňa JM, Alejandre-Ramos D, López Ó, Maya I, Lagunes I, Padrón JM, Peňa-Altamira LE, Bartolini M, Monti B, Bolognesi ML, Fernández-Bolaňos JG (2017) New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer’s and anti-proliferative agents. Eur J Med Chem 138:761–773PubMedCrossRefGoogle Scholar
  28. Rong RX, Wang SS, Liu X, Li RF, Wang KR, Cao ZR, Li XL (2018) Lysosomes-targeting imaging and anticancer properties of novel bis-naphthalimide derivatives. Bioorg Med Chem Lett 28:742–747PubMedCrossRefGoogle Scholar
  29. Rubino S, Busà R, Attanzio A, Alduina R, Stefano VD, Girasolo MA, Orecchio S, Tesoriere L (2017) Synthesis, properties, antitumor and antibacterial activity of new Pt(II) and Pd(II) complexes with 2,20-dithiobis(benzothiazole) ligand. Bioorg Med Chem 25:2378–2386PubMedCrossRefGoogle Scholar
  30. Shao J, Li YQ, Wang ZY, Xiao MM, Yin PH, Lu YH, Qian XH, Xu YF, Liu JW (2013) 7b, a novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2- and p38 MAPK-mediated activation of NF-κB in LPS-stimulated RAW264.7 macrophages. Int Immunopharmacol 17:216–228PubMedCrossRefGoogle Scholar
  31. Shang J, Wang WM, Li YH, Song HB, Li ZM, Wang JG (2012) Synthesis, crystal structure, in vitro acetohydroxyacid synthase inhibition, in vivo herbicidal activity, and 3D-QSAR of new asymmetric aryl disulfides. J Agric Food Chem 60:8286–8293PubMedCrossRefGoogle Scholar
  32. Sheppard JG, Frazier KR, Saralkar P, Hossain MF, Geldenhuys WJ, Long TE (2018) Disulfiram-based disulfides as narrow-spectrum antibacterial agents. Bioorg Med Chem Lett 28:1298–1302PubMedPubMedCentralCrossRefGoogle Scholar
  33. Shi XR, Yin CX, Wen Y, Huo FJ (2019) A dual-sites fluorescent probe based on symmetric structure of naphthalimide derivative to detect H2S. Dye Pigments 165:38–43CrossRefGoogle Scholar
  34. Sirakawa K, Aki O, Tsujikawa T (1970) S-alkylthioisothioureas. I. Chem Pharm Bull 18:235–242CrossRefGoogle Scholar
  35. Sk UH, Gowda ASP, Crampsie MA, Yun JK, Spratt TE, Amin S, Sharma AK (2011) Development of novel naphthalimide derivatives and their evaluation as potential melanoma therapeutics. Eur J Med Chem 46:3331–3338PubMedCrossRefGoogle Scholar
  36. Staneva D, Grabchev I, Bosch P, Vasileva-Tonkova E, Kukeva R, Stoyanova R (2018) Synthesis, characterisaion and antimicrobial activity of polypropylenamine metallodendrimers modified with 1,8-naphthalimides. J Mol Struct 1164:363–369CrossRefGoogle Scholar
  37. Tian ZY, Xie SQ, Du YW, Ma YF, Zhao J, Gao WY, Wang CJ (2009) Synthesis, cytotoxicity and apoptosis of naphthalimide polyamine conjugates as antitumor agents. Eur J Med Chem 44:393–399PubMedCrossRefGoogle Scholar
  38. Turos E, Revell KD, Ramaraju P, Gergeres DA, Greenhalgh K, Young A, Sathyanarayan N, Dickey S, Lim D, Alhamadsheh MM, Reynolds K (2008) Unsymmetric aryl-alkyl disulfide growth inhibitors of methicillin-resistant Staphylococcus aureus and Bacillus anthracis. Bioorg Med Chem 16:6501–6508PubMedPubMedCentralCrossRefGoogle Scholar
  39. Un HL, Shuai WU, Huang Chang-Bo, Xu Zheng, Lin XU (2015) A naphthalimide-based fluorescent probe for highly selective detection of histidine in aqueous solution and its application in in-vivo imaging. Chem Commun 51:3143–3146CrossRefGoogle Scholar
  40. Vale N, Ferreira A, Fernandes I, Alves C, Araújo MJ, Mateus N, Gomes P (2017) Gemcitabine anti-proliferative activity significantly enhanced upon conjugation with cell-penetrating peptides. Bioorg Med Chem Lett 27:2898–2901PubMedCrossRefGoogle Scholar
  41. Verma M, Luxami V, Pual K (2013) Synthesis, in vitro evaluation and molecular modelling of naphthalimide analogue as anticancer agents. Eur J Med Chem 68:352–360PubMedCrossRefGoogle Scholar
  42. Vineberg JG, Zuniga ES, Kamath A, Chen YJ, Seitz JD, Ojima I (2014) Design, synthesis, and biological evaluations of tumor-targeting dual-warhead conjugates for a taxoid-camptothecin combination chemotherapy. J Med Chem 57:5777–5791PubMedPubMedCentralCrossRefGoogle Scholar
  43. Wang KR, Wang YQ, Yan XH, Chen H, Ma G, Zhang PZ, Li JM, Li XL, Zhang JC (2011) DNA binding and anticancer activity of naphthalimides with 4-hydroxyl-alkylamine side chains at different lengths. Bioorg Med Chem Lett 22:937–941PubMedCrossRefGoogle Scholar
  44. Wang YX, Zhang XB, Zhao J, Xie SQ, Wang CJ (2012) Nonhematotoxic naphthalene diimide modified by polyamine: synthesis and biological evaluation. J Med Chem 55:3502–3512PubMedCrossRefGoogle Scholar
  45. Zhang TT, Wang PY, Zhou J, Shao WB, Fang HS, Zhou X, Wu ZB (2017) Antibacterial and antifungal activities of 2-(substituted ether)-5-(1-phenyl-5-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole derivatives. J Heterocycl Chem 54:2319–2324CrossRefGoogle Scholar
  46. Zhang YY, Zhou CH (2011) Synthesis and activities of naphthalimide azoles as a new type of antibacterial and antifungal agents. Bioorg Med Chem Lett 21:4349–4352PubMedCrossRefGoogle Scholar
  47. Zhu SJ, Ying HZ, Wu Y, Qiu N, Liu T, Yang B, Dong XW, Hu YZ (2015) Design, synthesis and biological evaluation of novel podophyllotoxin derivatives bearing 4β-disulfide/trisulfide bond as cytotoxic agents. RSC Adv 5:103172–103183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xin Li
    • 1
  • Zheng Wu
    • 1
  • Lu Xu
    • 1
  • Chun-Lan Chi
    • 1
  • Bao-Quan Chen
    • 1
    Email author
  1. 1.School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells And Photochemical ConversionTianjin University of TechnologyTianjinChina

Personalised recommendations