Advertisement

In vitro evaluation of the antibacterial activity of amitriptyline and its synergistic effect with ciprofloxacin, sulfamethoxazole–trimethoprim, and colistin as an alternative in drug repositioning

  • Catrine de S. Machado
  • Tacieli F. da Rosa
  • Marissa B. Serafin
  • Angelita Bottega
  • Silvana S. Coelho
  • Vitoria S. Foletto
  • Roberta F. Rampelotto
  • Vinicius Victor Lorenzoni
  • Sara de L. Marion
  • Rosmari HörnerEmail author
Original Research
  • 13 Downloads

Abstract

In the present study we evaluated the biological activity of amitriptyline, a tricyclic antidepressant, and its antibacterial activity was determined in vitro, individually and in combination with ciprofloxacin, sulfamethoxazole-trimethoprim, and colistin. Being tested against multi drug resistant clinical isolates and American Type Culture Collection (ATCC) standard strains, through the fractional inhibitory concentration index (FICI) and tolerance index. Their ability to cleave plasmid DNA was also analyzed. Amitriptyline showed activity against Gram-positive and Gram-negative bacteria. In combination with colistin, two strains of Klebsiella pneumoniae producing carbepenemase with a minimum inhibitory concentration of 4 μg/mL were prominent. FICI demonstrated synergistic effect in 15 combinations with antibiotics. Amitriptyline was able to cleave the DNA at concentrations of 3.75 and 1.875 mM at pH 7.4 at 50 °C. The results obtained in this study allow us to suggest amitriptyline as a potential antibiotic in drug repositioning.

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abd-El-Aziz AS, Agatemor C, Etkin N (2017) Antimicrobial resistance challenged with metal-based antimicrobial macromolecules. Biomaterials 118:27–50.  https://doi.org/10.1016/j.biomaterials.2016.12.002 CrossRefPubMedGoogle Scholar
  2. Annadurai S, Basu S, Ray S, Dastidar SG, Chakrabarty NA (1998) Antibacterial activity of the anti-inflammatory agente diclofenac sodium. Indian J Exp Biol 36:86–90PubMedGoogle Scholar
  3. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683.  https://doi.org/10.1038/nrd1468 CrossRefGoogle Scholar
  4. AsokKumar K, Ganguly K, Mazumdar K, Dutta NK, Dastidar SG, Chakrabarty NA (2003) Amlodipine: a cardiovascular drug with power ful antimicrobial property. Acta Microbiol Pol 52:285–292Google Scholar
  5. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2003) Current protocols in molecular biology. 5th edn. John Wiley & Sons Inc., Hoboken, NJ, USA; ISBN: 978-0.471-50338-5Google Scholar
  6. Bielecka-Wajdman AM, Ludyga T, Machnik G, Gołyszny M, Obuchowicz E (2018) Tricyclic antidepressants modulate stressed mitochondria in glioblastoma multiforme cells. Cancer Control 25:1–9.  https://doi.org/10.1177/1073274818798594 CrossRefGoogle Scholar
  7. Brown D (2015) Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 14:821–832.  https://doi.org/10.1038/nrd4675 CrossRefPubMedGoogle Scholar
  8. CLSI (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th edn. CLSI standard M07. Clinical and Laboratory Institute, Wayne, PA. ISBN: 1-56238-836-3Google Scholar
  9. Chakrabarty AN, Acharya DP, Niyogi D, Dastidar SG (1989) Drug interaction of some non conventional antimicrobial chemotherapeutic agentes with special reference to promethazine. Indian J Med Res 89:233–237PubMedGoogle Scholar
  10. Das B, Mandal D, Dash SK, Chattopadhyay S, Tripathy S, Dolai DP, Dey SK, Roy S (2016) Eugenol provokes ROS-mediated membrane damage-associated antibacterial activity against clinically isolated multidrug-resistant Staphylococcus aureus strains. Infect Dis 9:11–19.  https://doi.org/10.4137/IDRT.S31741 CrossRefGoogle Scholar
  11. Dastidar SG, Saha PK, Sanyamat B, Chakrabarty AN (1976) Antibacterial activities of ambodryl and benadryl. J Appl Bacteriol 41:209–214.  https://doi.org/10.1111/j.1365-2672.1976.tb00621.x CrossRefPubMedGoogle Scholar
  12. Dastidar SG, Mondal U, Niyogi S, Chakrabaty NA (1986) Antibacterial property of methyl-DOPA and development of cross resistance in m-DOPA mutants. Indian J Med Res 84:142–147PubMedGoogle Scholar
  13. Dastidar SG, Das S, Mookerjee M, Chattopadhyay D, Ray S, Chakrabarty AN (1988) Antibacterial activity of local anaesthetics procaine and lignocaine. Indian J Med Res 87:506–508PubMedGoogle Scholar
  14. Dastidar SG, Chaudhuri A, Annadurai S, Ray S, Mookherjee M, Chakrabarty AN (1995) In vitro and in vivo antimicrobial action of fluphenazine. J Chemother 7:201–206.  https://doi.org/10.1179/joc.1995.7.3.201 CrossRefPubMedGoogle Scholar
  15. Duarte EH, Gorla FA, Sartori ER, Tarley CRT (2014) Voltammetric determination of amitriptyline in pharmaceutical formulations with boron doped diamond electrode exploiting measurements in acid medium. Mod Chem 37:1496–1502.  https://doi.org/10.5935/0100-4042.20140225 CrossRefGoogle Scholar
  16. Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M, Brown ED, Wright GD (2011) Combinations of antibiotics and non antibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7:348–350.  https://doi.org/10.1038/nchembio.559 CrossRefPubMedGoogle Scholar
  17. Gowda KRS, Mathew BB, Sudhamani CN, Naik HSB (2014) Mechanism of DNA binding and cleavage. J Biomed Biotechnol 2:1–9.  https://doi.org/10.12691/bb-2-1-1 CrossRefGoogle Scholar
  18. Federico MP, Furtado GH (2018) Immediate and later impacts of antimicrobial consumption on carbapenem-resistant Acinetobacter spp., Pseudomonas aeruginosa, and Klebsiella spp. in a teaching hospital in Brazil: a 10-year trend study. Eur J Clin Microbiol Infect Dis 37:2153–2158.  https://doi.org/10.1007/s10096-018-3352-1 CrossRefPubMedGoogle Scholar
  19. Konaté K, Movoungou JF, Lepengué AN, Aworet-Samseny RRR, Hilou A, Souza A, Dicko MH, M’Batchi B (2012) Antibacterial activity against β- lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: fractional Inhibitory Concentration Index (FICI) determination. Ann Clin Microbiol Antimicrob 11:18.  https://doi.org/10.1186/1476-0711-11-18 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kristiansen JE, Amaral L (1997) The potential management of resistant infections with non-antibiotics. J Antimicrob Chemother 40:319–327.  https://doi.org/10.1093/jac/40.3.319 CrossRefPubMedGoogle Scholar
  21. Kristiansen JE, Blom J (1981) Effect of chlorpromazine on the ultra structure of Staphylococcus aureus. Acta Pathol Microbiol Scand, Sect B: Microbiol 89:399–405. PMID: 7336926Google Scholar
  22. Loureiro RJ, Roque F, Rodrigues AT, Herdeiro MT, Ramalheira E (2016) O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Rev Port Sau Pub 34:77–84.  https://doi.org/10.1016/j.rpsp.2015.11.003 CrossRefGoogle Scholar
  23. Mandal A, Sinha C, Jena AK, Ghosh S, Samanta A (2010) An investigation on in vitro and in vivo antimicrobial properties of the antidepressant: amitriptyline hydrochloride. Braz J Microbiol 41:635–642.  https://doi.org/10.1590/S1517-83822010000300014 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Manna KK, Dastidar SG (1984) The anti-hypertensive drug propranolol hydrochloride (carditap): its anti-bacterial property. In: Proceedings of the 6th national congress of the Indian Association of Medical Microbiologists (IAMM). pp 137–141Google Scholar
  25. Moraes FLL (2012) Evaluation of antidepressants as anadjuvant in the treatment of cancer pain. [Completion of course work]. Paraiba: State University of Paraiba, Center for Biological and Health Sciences.Google Scholar
  26. Morehead MS, Scarbrough C (2018) Emergence of global antibiotic resistance. Prim Care 45:467–484.  https://doi.org/10.1016/j.pop.2018.05.006 CrossRefPubMedGoogle Scholar
  27. Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard LM, Hiasa H, Marks KR, Kerns RJ, Berger JM, Drlica K (2014) Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding. J Biol Chem 289:12300–12312.  https://doi.org/10.1074/jbc.M113.529164 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Muthukumar V, Janakiraman K (2014) Evoluation of antibacterial activy of amitriptyline hydrochloride. Int J ChemTech Res 6:4878–4883Google Scholar
  29. National Committee for Clinical Laboratory Standards (1999) Methods for determining bactericidal activity of antimicrobial agents. Approved Guideline M26-A. vol. 19; No. 8. NCCLS, Wayne, USA. https://clsi.org/media/1462/m26a_sample.pdf
  30. Naeem A, Badshah SL, Muska M, Ahmad N, Khan K (2016) The current case of quinolones: synthetic approaches and antibacterial activity. Molecules 21:268.  https://doi.org/10.3390/molecules21040268 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1–1.  https://doi.org/10.1093/jac/dkg301 CrossRefPubMedGoogle Scholar
  32. Olaitan AO, Morand S, Rolain JM (2016) Emergence of colistin-resistant bacteria in humans without colistin usage: a new worry and cause for vigilance. Int J Antimicrob Agents 47:1–3.  https://doi.org/10.1016/j.ijantimicag.2015.11.009 CrossRefPubMedGoogle Scholar
  33. Pal T, Dutta NK, Mazumder K, Dasgupta A, Jeyaseeli L, Dastidar SG (2006) Assesement of antibacterial activity of the cardiovascular drug Nifedipine. Orient Pharm Exp Med 6:126–133.  https://doi.org/10.3742/OPEM.2006.6.2.126 CrossRefGoogle Scholar
  34. Palit PP, Mandal SC, Mandal NB (2013) Reuse of old, existing, marketed non-antibiotic drugs as antimicrobial agents: a new emerging therapeutic approach. In: A Méndez-Vilas (ed) Microbial pathogens and strategies for combating them: science, technology and education, Spain: Badajoz: Formatex Research Center. p 1883–1892Google Scholar
  35. Pelógia NCC, Machado BG, Almeida FCB, Constantino E, Pires OC (2011) Amitriptyline effects on acutepa in modulation in rats submitted to sciatic nerve ligation. J Pain 12:245–249.  https://doi.org/10.1590/S1806-00132011000300010 CrossRefGoogle Scholar
  36. Pitout JDD, Nordmann P, Poirel L (2015) Carbapenemase-producing Klebsiella pneumoniae, akey pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59:5873–5884.  https://doi.org/10.1128/AAC.01019-15 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doing A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2018) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58.  https://doi.org/10.1038/nrd.2018.168 CrossRefPubMedGoogle Scholar
  38. Rang & Dale Farmacologia (2012) 7edn. Elsevier, Rio de Janeiro, RJ XXV, 778pGoogle Scholar
  39. Rodrigues SA Chlorpromazine, C17H19N2SCl. Modern Chemistry. http://qnint.sbq.org.br/novo/index.php?hash=molecula.264 Accessed July 2019
  40. Santiago MDS, Carvalho DS, Gabbai AA, Pinto MMP, Moutran ARC, Villa TR (2014) Amitriptyline and aerobic exercise or amitriptyline alone in the treatment of chronic migraine: a randomized comparative study. Arch Neuro-Psychiatry 72:851–855.  https://doi.org/10.1590/0004-282X20140148 CrossRefGoogle Scholar
  41. Sarkar A, Kumar KA, Dutta NK, Chakraborty P, Dastidar SG (2003) Evaluation of in vitro and in vivo antibacterial activity of dobutamine hydrochloride. Indian J Med Microbiol 21:172–178PubMedGoogle Scholar
  42. Schneider EK, Reyes-Ortega F, Velkov T, Li J (2017) Antibiotic–non-antibiotic combinations for combating extremely drug-resistant Gram-negative “superbugs”. Essays Biochem 61:115–125.  https://doi.org/10.1042/EBC20160058 CrossRefPubMedGoogle Scholar
  43. Serafin MB, Hörner R (2018) Drug repositioning, a new alternative in infectious diseases. Braz J Infect Dis 22:252–256.  https://doi.org/10.1016/j.bjid.2018.05.007 CrossRefPubMedGoogle Scholar
  44. Silva RF (2010) Fungal infections in immunocompromised animals. J Bras Pneumol São Paulo, 36(1):142–147 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-37132010000100019&lng=en&nrm=iso.  https://doi.org/10.1590/S1806-37132010000100019 Accessed 19 July 2019CrossRefGoogle Scholar
  45. Xue H, Li J, Xie H, Wang Y (2018) Review of drug repositioning approaches and resources. Int J Biol Sci 14:1232–1244.  https://doi.org/10.7150/ijbs.24612 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zawacka K, Love W, Lanzas C, Booth JG, Gröhn YT (2018) Inferring the interaction structure of resistance to antimicrobials. Prev Vet Med 152:81–88.  https://doi.org/10.1016/j.prevetmed.2018.02.007 CrossRefGoogle Scholar
  47. Yeo CY, Sim JH, Khoo CH, Goh ZJ, Ang KP, Cheah YK, Fairuz ZA, SNBA Halim, Ng SW, Seng HL, Tiekink ERT (2013) Pathogenic Gram-positive bacteria are highly sensitive to triphenylphosphanegold(O-alkylthiocarbamates), Ph3PAu[SC(OR)=N(p-tolyl)] (R = Me, Et and iPr). Gold Bull 46:145–152.  https://doi.org/10.1007/s13404-013-0091-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Catrine de S. Machado
    • 1
    • 2
  • Tacieli F. da Rosa
    • 1
    • 2
  • Marissa B. Serafin
    • 1
    • 2
  • Angelita Bottega
    • 1
    • 2
  • Silvana S. Coelho
    • 1
    • 2
  • Vitoria S. Foletto
    • 1
    • 2
  • Roberta F. Rampelotto
    • 1
    • 2
  • Vinicius Victor Lorenzoni
    • 3
  • Sara de L. Marion
    • 1
    • 4
  • Rosmari Hörner
    • 1
    • 2
    • 5
    Email author
  1. 1.Federal University of Santa MariaSanta MariaBrazil
  2. 2.Graduate Program in Pharmaceutical SciencesSanta MariaBrazil
  3. 3.Master of Pharmaceutical SciencesFederal University of Santa MariaSanta MariaBrazil
  4. 4.Student of PharmacyFederal University of Santa MariaSanta MariaBrazil
  5. 5.Department of Clinical and Toxicological AnalysisFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations