Advertisement

Design, synthesis, and anticancer evaluation of 1,2,4-oxadiazole functionalized quinoline derivatives

  • Pruthu Kala
  • Syed Khasim Sharif
  • CH. Murali Krishna
  • Dittakavi RamachandranEmail author
Original Research
  • 22 Downloads

Abstract

A library of 1,2,4-oxadiazole functionalized quinoline derivatives (13a–j) were synthesized and their structures were confirmed by 1H NMR, 13CNMR and Mass Spectral analysis. Further, these compounds were evaluated for their anticancer activity against four human cancer cell lines, namely MCF-7 (breast), A549 (lung), DU-145 (prostate) and MDA MB-231 (breast) using Etoposide as the positive control. Most of these derivatives exhibited more potent activity towards the four cancer cell lines compared to Etoposide. Amongst all the compounds tested, compounds 13b, 13c, 13h, 13i and 13j exhibited promising activity. Further of these compounds 13b, 13i and 13j exhibited excellent activity, when compared with Etoposide.

Keywords

Lenvatinib Proxazole Quinoline 1,2,4-oxadiazole Anticancer activity 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abadi AH, Hegazy GH, Zaher AAE (2005) Synthesis of novel 4-substituted-7- trifluoromethylquinoline derivatives with notric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents. Bioorg Med Chem 13:5759–5765PubMedCrossRefGoogle Scholar
  2. Agarwal M, Singh V, Sharma SC, Sharma P, Ansari MdY, Jadav SS, Yasmin S, Sreenivasulu R, Hassan MdZ, Saini P, Ahsan MJ (2016) Design and synthesis of new 2,5-disubstituted-1,3,4-oxadiazole analogues as anticancer agents. Med Chem Res 25:2289–2303CrossRefGoogle Scholar
  3. Ahsan MJ, Choudhary K, Jadav SS, Yasmin S, Ansari MY, Sreenivasulu R (2015) Synthesis, antiproliferative activity and molecular docking studies of curcumin, analogues bearing pyrazole ring. Med Chem Res 24:4166–4180CrossRefGoogle Scholar
  4. Antunes R, Batista H, Srivastava RM, Thomas G, Araujo CC, Longo RL, Magalhaes H, Leao MBC, Pava AC (2003) Synthesis, characterization and interaction mechanism of new ozadiazolo-pthalimides as peripheral analgesics. IV. J Mol Struct 660:1–13CrossRefGoogle Scholar
  5. Athri P, Wilson WD (2009) Molecular dynamics of water-mediated interactions of a linear benzimidazole-biphenyl diamidine with the DNA minor groove. J Am Chem Soc 131:7618–7625PubMedPubMedCentralCrossRefGoogle Scholar
  6. Axel K, Jürgen E (2001) Pharmaceutical substances: syntheses, patents, applications. Thieme Chemistry, Stuttgart, GermanyGoogle Scholar
  7. Benard C, Zouhiri F, Normand-Bayle M, Danet M, Desmaele D, Leh H, Mouscadet JF, Mbemba G, Thomas CM, Bonnenfant S, Le Bret M, d’Angelo (2004) Linker-modified quinoline derivatives targeting HIV-1integrase: synthesis and biological activity. Bioorg Med Chem Lett 14:2473–2476PubMedCrossRefGoogle Scholar
  8. Bokach NA, Khripoun AV, Kukushkin VY, Haukka M, Pombeiro AJL (2003) A route to 1,2,3-Oxadiazoles and their complexes via platinum -mediated 1,3-dipolar cycloaddition of notrile oxides to organonitriles. Inorg Chem 42:896–903PubMedCrossRefGoogle Scholar
  9. Boys M, Schretzman L, Chandrakumar N, Tollefson M, Mohler S, Downs V, Penning T, Russell M, Wendt J, Chen B, Stenmark H, Wu H, Spangler D, Clare M, Desai B, Khanna I, Nguyen M, Duffin T, Engleman V, Finn M, Freeman S, Hanneke M, Keene J, Klover J, Nickols G, Nickols M, Steininger C, Westlin M, Westlin W, Yu Y, Wang Y, Dalton C, Norring S (2006) Convergent, parallel synthesis of a series of β- substituted 1,2,4-oxadiazole butanoic acids as potent and selectie αvβ3 recetor antagonists. Bioorg Med Chem Lett 16:839–844PubMedCrossRefGoogle Scholar
  10. Clitherow JW, Beswick P, Irving WJ, Scopes DIC, Barnes JC, Clapham J, Brown JD, Evans DJ, Hayes AG (1996) Novel 1,2,4-oxadiazoles as potent and selective histamine H3 receptor antagonists. Bioorg Med Chem Lett 6:833–838CrossRefGoogle Scholar
  11. Cottrell DM, Capers J, Salem MM, DeLuca-Fradley K, Croft SL, Werbovetz KA (2004) Antikinetoplastid activity of 3-aryl-5-thiocyanatomethyl-1,2,4-oxadiazoles. Bioorg Med Chem 12:2815–2824PubMedCrossRefGoogle Scholar
  12. De Martino G, La Regina G, Coluccia A, Edler MC, Barbera MC, Brancale A, Wilcox E, Hamel E, Artico M, Silvestri R (2004) Arylthioindoles, potent inhibitors of tubulin polymerization. J Med Chem 47:6120–6123PubMedCrossRefGoogle Scholar
  13. dos Santos Filho JM, Leite ACL, de Oliveira BG, Moreira DRM, Lima MS, Soares MBP, Leite LFCC (2009) Design, synthesis and cruzin docking of 3-(4-substituted-aryl)- 1,2,4-oxadiazole-N-acylhydrazones as anti-Trypanosoma cruzi agents. Bioorg Med Chem 17:6682–6691PubMedCrossRefGoogle Scholar
  14. Durgesh R, Sreenivasulu R, Srinivasarao P, Raju RR (2018a) Synthesis and anti-tumor evaluation of novel 5-bromo indole-aryl ketohydrazide-hydrazone analogues. Asian J Chem 30:1201–1204CrossRefGoogle Scholar
  15. Durgesh R, Sreenivasulu R, Srinivasarao P, Raju RR (2018b) Synthesis and anticancer evaluation of indazole-aryl hydrazide-hydrazone derivatives. J Ind Chem Soc 95:433–438Google Scholar
  16. Durgesh R, Sreenivasulu R, Raju RR (2018c) Synthesis and anti-tumor evaluation of Indole-substituted Indole fused keto hydrazide-hydrazones. J Pharm Res 12:42–46Google Scholar
  17. Eckhardt S (2002) Recent progress in the development of anticancer agents. Curr Med Chem 2:419–439Google Scholar
  18. George Rosenker KM, Paquette WD, Johnston PA, Sharlow ER, Andreas V, Bakan A, Lazo JS, Wipf P (2015) Synthesis and biological wvaluation of 3-amino isoquinolin-1(2H)- one based inhibitors of the dual-specificity phosphatase Cdc25B. Bioorg Med Chem 23:2810–2818PubMedCrossRefGoogle Scholar
  19. Gupta SK, Mishra A (2016) Synthesis, characterization & screening for anti-inflammatory & analgesic activity of quinolone derivatives bearing azetidinones scaffolds. Antiinflamm Antiallergy Agents Med Chem 15:31–43PubMedCrossRefGoogle Scholar
  20. Hatti I, Sreenivasulu R, Jadav SS, Ahsan MJ, Raju RR (2015a) Synthesis and biological evaluation of 1,3,4-oxadiazole linked bis indole derivatives as anticancer agents. Monatsh Chem 146:1699–1705CrossRefGoogle Scholar
  21. Hatti I, Sreenivasulu R, Jadav SS, Jayaprakash V, Kumar CG, Raju RR (2015b) Synthesis, cytotoxic activity and docking studies of new 4-aza podophyllotoxin derivatives. Med Chem Res 24:3305–3313CrossRefGoogle Scholar
  22. Haugwitz RD, Martinez AJ, Venslavsky J, Angel RG, Maurer BV, Jacobs GA, Narayanan VL, Cruthers LR, Szanto J (1985) Antiparasitic agents. 6. Synthesis and anthelmintic activities of novel isothiocyanatophenyl-a,2,4-oxadiazoles. J Med Chem 2:1234–1241CrossRefGoogle Scholar
  23. Hemming K, Alan RK, Christopher AR, Eric FVS, Richard JKT (2008) Comprehensive Heterocyclic Chemistry III. Elsevier, Oxford, pp 243–314CrossRefGoogle Scholar
  24. Ispikoudi M, Amvrazis M, Kontogiorgis C, Koumbis AE, Litinas KE, Hadjipavlou-Litina D, Fylaktakidou KC (2010) Convenient synthesis and biological profile of 5-amino- substituted 1,2,4-oxadiazole derivatives. Eur J Med Chem 45:5635–5645PubMedCrossRefGoogle Scholar
  25. Jeschke P, Wachendorff-Neumann U, Erdelen C, Mencke N, Turberg A (1995) Ger. Offen. DE 4; 401,107 (Cl.C07D271/06), 20 Jul 1995, Appl. 17 Jan 1994, 40pp. Chem Abstr 123:340135tGoogle Scholar
  26. Joshi AA, Narkhede SS, Viswanathan CL (2005) Design, synthesis and evaluation of 5- substituted amino-2,4-diamino-8-chloropyrimido-[4,5-b]quinolones as novel antimalarials. Bioorg Med Chem Lett 15:73–76PubMedCrossRefGoogle Scholar
  27. Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10:123–130PubMedCrossRefGoogle Scholar
  28. Kiss LE, Ferreira HS, Torrao L, Bonifacio MJ, Palma PN, Soares-da-Silva P, Learmonth DA (2010) Discovery of a long-acting, preipherally selective inhibitor of catechol-O- methyltransferase. J Med Chem 53:3396–3411PubMedCrossRefGoogle Scholar
  29. Kumar A, Paliwal D, Saini D, Thakur A, Aggarwal S, Kaushik D (2014) A comprehensive review on synthetic approach for antimalarial agents. Eur J Med Chem 85:147–178PubMedCrossRefGoogle Scholar
  30. Lee CW, Hong DH, Han SB, Jong SH, Kim HC, Fine RL, Lee SH, Kim HM (2002) A novel stereo-selective sulfonylurea, 1-[1-(4-aminobenzoyl)-2,3-dihydro-1H-indol-6-sulfonyl]- 4-phenyl-imidazolidin-2-one, has antitumor efficacy in in vitro and in vivo tumor models. Biochem Pharmacol 64:473–480PubMedCrossRefGoogle Scholar
  31. Lueg C, Schepmann D, Günther R, Brust P, Wünsch B (2013) Development of fluorinated CB2 receptor agonists for PET studies. Bioorg Med Chem 21:7481–7498PubMedCrossRefGoogle Scholar
  32. Lu Y, Chen J, Xiao M, Li W, Miller DD (2012) An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 29:2943–2971PubMedPubMedCentralCrossRefGoogle Scholar
  33. Madhavi S, Sreenivasulu R, Ansari MdY, Ahsan MJ, Raju RR (2016) Synthesis, biological evaluation and molecular docking studies of Pyridine incorporated chalcone derivatives as anticancer agents. Lett Org Chem 13:682–692CrossRefGoogle Scholar
  34. Madhavi S, Sreenivasulu R, Jyotsna Y, Raju RR (2017a) Synthesis of Chalcone incorporated Quinazoline derivatives as anticancer agents. Saudi Pharm J 25:275–279PubMedCrossRefGoogle Scholar
  35. Madhavi S, Sreenivasulu R, Raju RR (2017b) Synthesis and biological evaluation of oxadiazole incorporated ellipticine derivatives as anticancer agents. Monatsh Chem 148:933–938CrossRefGoogle Scholar
  36. Maguire MP, Sheets KR, McVety K, Spada AP, Zilberstein A (1994) A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives. J Med Chem 37:2129–2137PubMedCrossRefGoogle Scholar
  37. Manfredini S, Lampronti I, Vertuani S, Solaroli N, Recanatini M, Bryan D, McKinney M (2000) Design, synthesis and binding at cloned muscarinic receptors of N-[5-(1’-substituted-acetoxymethyl)-3-oxadiazolyl] and N-[4-(1’-substituted-acteoxy methyl)-2-dioxolanyl] dialkyl amines. Bioorg Med Chem 8:1559–1566PubMedCrossRefPubMedCentralGoogle Scholar
  38. Matsuki M, Hoshi T, Yamamoto Y, Ikemori‐Kawada M, Minoshima Y, Funahashi Y, Matsui J (2018) Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signalling pathways in human hepatocellular carcinoma models. Cancer Med 7:2641–2653PubMedPubMedCentralCrossRefGoogle Scholar
  39. Najafi Z, Saeedi M, Mahdavi M, Sabourian R, Khanavi M, Tehrani MB, Moghadam FH, Edraki N, Karimpor-Razkenari E, Sharifzadeh M, Foroumadi A, Shafiee A, Akbarzadeh T (2016) Design and synthesis of novel anti-Alzheimer’s agents: acridine-chromenone and quinoline-chromenone hybrids. Bioorg Chem 67:84–94PubMedCrossRefPubMedCentralGoogle Scholar
  40. Plattner J, Desai MC (2006) Comprehensive medicinal chemistry II. Elsevier, Amsterdam, LondonCrossRefGoogle Scholar
  41. Pragathi YJ, Sreenivasulu R, Veronica D, Madhavi S, Raju RR (2019) Design, synthesis and biological evaluation of novel 2-(4-arylsubstituted-1H-1,2,3-triazol-1-yl)-N-(4-(2- (thiazol-2-yl)benzo[d]thiazol-6-yl)phenyl) acetamide derivatives as potent anticancer agents. Russian J Gen Chem 89:1009–1014CrossRefGoogle Scholar
  42. Reddy NB, Burra VR, Ravindranath LK, Sreenivasulu R, Kumar VN (2016a) Synthesis and biological evaluation of benzoxazole fused combretastatin derivatives as anticancer agents. Monatsh Chem 147:593–598CrossRefGoogle Scholar
  43. Reddy NB, Burra VR, Ravindranath LK, Kumar VN, Sreenivasulu R, Sadanandam P (2016b) Synthesis and biological evaluation of benzimidazole fused ellipticine derivatives as anticancer agents. Monatsh Chem 147:599–604CrossRefGoogle Scholar
  44. Roma G, Di Braccio M, Grossi G, Mattioli F, Ghia M (2000) 1,8-Naphthyridines IV. 9- substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino)[1,2,4]triazolo[4,3- a][1,8]naphtha yridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur J Med Chem 35:1021–1035PubMedCrossRefGoogle Scholar
  45. Shahinshavali SK, Sreenivasulu R, Guttikonda VR, Kolli D, Rao MVB (2019) Synthesis and biological evaluation of amide derivatives of 1,2-isoxazole fused 1,2,4-thiadiazole as anticancer agents. Russian J Gen Chem 89:324–329CrossRefGoogle Scholar
  46. Sreenivasulu R, Sujitha P, Jadav SS, Ahsan MJ, Kumar CG, Raju RR (2017) Synthesis, antitumor evaluation and molecular docking studies of Indole–Indazolyl hydrazide– hydrazone derivatives. Monatsh Chem 148:305–314CrossRefGoogle Scholar
  47. Sreenivasulu R, Durgesh R, Jadav SS, Sujitha P, Kumar CG, Raju RR (2018) Synthesis, anticancer evaluation and molecular docking studies of bis(indolyl)triazinones, Nortopsentin analogs. Chem Pap 72:1369–1378CrossRefGoogle Scholar
  48. Sreenivasulu R, Reddy KT, Jadav SS, Sujitha P, Kumar CG, Raju RR (2019) Synthesis, antiproliferative and apoptosis induction potential activities of novel bis(indolyl)hydrazide-hydrazone derivatives. Bioorg Med Chem 27:1043–1055PubMedCrossRefGoogle Scholar
  49. Solomon VR, Lee H (2011) Quinoline as a privileged scaffold in cancer drug iscovery. Curr Med Chem 18:1488–1508PubMedCrossRefGoogle Scholar
  50. Spandana Z, Sreenivasulu R, Rao MVB (2019a) Design, synthesis and anticancer evaluation of carbazole fused aminopyrimidine derivatives. Lett Org Chem 16:662–667CrossRefGoogle Scholar
  51. Spandana Z, Sreenivasulu R, Rekha TM, Rao MVB (2019b) Novel 1,3,4-oxadiazole fused thiadiazole derivatives: synthesis and study of anticancer activities. Lett Drug Des Disco 16:656–662CrossRefGoogle Scholar
  52. Subramanyam M, Sreenivasulu R, Rambabu G, Rao MVB, Rao KP (2018) Synthesis, biological evaluation and docking studies of 1,3,4-oxadiazole fused benzothiazole derivatives for anticancer drugs. Lett Drug Des Disco 15:1299–1307CrossRefGoogle Scholar
  53. Suma VR, Sreenivasulu R, Subramanyam M, Rao KRM (2019) Design, synthesis and anticancer evaluation of amide derivatives of structurally modified Combretastatin A4 as anticancer agents. Russian J Gen Chem 89:499–504CrossRefGoogle Scholar
  54. Wen LR, Sun QC, Zhang HL, Li M (2013) A new rapid multicomponent domino heteroannulation of heterocyclic ketene aminals: solvent-free regioselective sythesis of functionalized benzo[g]imidazo[1,2-a]quinolinediones. Org Biomol Chem 11:781–786PubMedCrossRefGoogle Scholar
  55. Xu J, Wei L, Mathvink R, He J, Park YJ, He H, Leiting B, Lyons KA, Marsilio F, Patel RA, Wu JK, Thornberry NA, Weber AE (2005) Discovery of potent and selective phenylalanine based dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 15:2533–2536PubMedCrossRefGoogle Scholar
  56. Yakantham T, Sreenivasulu R, Raju RR (2019) Design, synthesis and anticancer evaluation of 2-(3-(4-((5-aryl-1,2,4-oxadiazol-3-yl)methoxy)phenyl)isoxazol-5-yl)-N-(3,4,5-trimeth yl phenyl) thiazol-4-amine derivatives. Russ J Gen Chem 89:1485–1490CrossRefGoogle Scholar
  57. Zajdel P, Partyka A, Marciniec K, Bojarski AJ, Pawlowski M, Wesolowska A (2014) Quinoline- and isoquinoline-sulfonamide analogs of aripiprazole: novel antipsychotic agents? Future Med Chem 6:57–75PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pruthu Kala
    • 1
  • Syed Khasim Sharif
    • 1
  • CH. Murali Krishna
    • 2
  • Dittakavi Ramachandran
    • 1
    Email author
  1. 1.Department of ChemistryAcharya Nagarjuna UniversityNagarjuna NagarIndia
  2. 2.Department of ChemistryAdikavi Nannaya UniversityRajamahendravaramIndia

Personalised recommendations