Advertisement

Synthesis and evaluation of a novel series of 6-bromo-1-cyclopentyl-1H-indazole-4-carboxylic acid-substituted amide derivatives as anticancer, antiangiogenic, and antioxidant agents

  • Ajay S. Sawant
  • Sonali S. Kamble
  • Parshuram M. Pisal
  • Rohan J. Meshram
  • Sanjay S. Sawant
  • Vilas A. Kamble
  • Vinod T. KambleEmail author
  • Rajesh N. GaccheEmail author
Original Research
  • 70 Downloads

Abstract

A series of novel indazole derivatives has been synthesized and evaluated for anticancer, antiangiogenic, and antioxidant activities. The capability of the synthesized compounds 11a–x to hinder the viability of three human cancer cells lines, HEP3BPN 11 (liver), MDA 453 (breast), and HL 60 (leukemia), were assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Among the compounds 11a–x screened, 11c and 11d showed the higher inhibitory activity on the viability of HEP3BPN 11 (liver), when compared with the standard methotrexate. These compounds were further tested to evaluate their potential to inhibit the proangiogenic cytokines associated with tumor development. Compound 11c was found to be a potent antiangiogenic agent against TNFα, VEGF, and EGF, whereas 11d showed potent antiangiogenic activity against TNFα, VEGF, IGF1, TGFb, and leptin inhibition. All the compounds 11a–x were screened for their antioxidant activities using 2,2-diphenyl-1-picryl hydrazine (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging activity. Compounds 11n, 11p, 11q, and 11v have shown significant OH radical scavenging activities, also compounds 11c, 11h, and 11k were found to have a DPPH radical scavenging activity and compounds 11a and 11m exhibited better SOR scavenging activity when compared with the reference compound ascorbic acid. In silico molecular docking analysis revealed important structural insights behind observed anti TNFα effect by present indazole compounds.

Keywords

Antiangiogenic Anticancer Antioxidant Indazole derivatives 

Notes

Acknowledgements

RNG thanks the financial assistance through DRDP, DST-PURSE schemes of SPPU Pune. SSK is sincerely thankful to UGC, New Delhi, India, for providing Maulana Azad National Fellowship (SRF).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2019_2454_MOESM1_ESM.docx (7.5 mb)
Supplementary Information

References

  1. Aksoy L, Kolay E, Ağılönü Y, Aslan Z, Kargıoğlu M (2013) Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi J Biol Sci 20:235–239PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andronati S, Sava V, Makan S, Kolodeev G (1999) Synthesis of 3-aryl-1-[(4-phenyl-1-piperazinyl) butyl] indazole derivatives and their affinity to 5-HT1A serotonin and dopamine D1 receptors. Pharmazie 54:99–101PubMedPubMedCentralGoogle Scholar
  3. Baraldi PG, Balboni G, Pavani MG, Spalluto G, Tabrizi MA, Clercq ED, Balzarini J, Bando T, Sugiyama H, Romagnoli R (2001) Design, synthesis, DNA binding, and biological evaluation of water-soluble hybrid molecules containing two pyrazole analogues of the alkylating cyclopropylpyrroloindole (CPI) subunit of the antitumor agent CC-1065 and polypyrrole minor groove binders. J Med Chem 44:2536–2543PubMedCrossRefPubMedCentralGoogle Scholar
  4. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy. Organ J 5:9–19Google Scholar
  5. Blevitt JM, Hack MD, Herman KL, Jackson PF, Krawczuk PJ, Lebsack AD, Liu AX, Mirzadegan T, Nelen MI, Patrick AN, Steinbacher S (2017) Structural basis of small-molecule aggregate induced inhibition of a protein–protein interaction. J Med Chem 60:3511–3517PubMedCrossRefPubMedCentralGoogle Scholar
  6. Celine D, Neil J, Steven KD, Louis L, William MH, Kenneth N, Stuart R, Rouse MB (2011) PCT Int. Appl. WO2011140325Google Scholar
  7. Chabner BA, Roberts TG,Jr (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chapdelaine M, Herzog KJ (2005) PCT Int. Appl. WO2005100351Google Scholar
  9. Corsi G, Palazzo G, Germani C, Scorza Barcellona P, Silvestrini B (1976) 1-Halobenzyl-1H-indazole-3-carboxylic acids. A new class of antispermatogenic agents. J Med Chem 19:778–783PubMedCrossRefPubMedCentralGoogle Scholar
  10. De Angelis M, Stossi F, Carlson KA, Katzenellenbogen BS, Katzenellenbogen JA (2005) Indazole estrogens: highly selective ligands for the estrogen receptor β. J Med Chem 48:1132–1144PubMedCrossRefPubMedCentralGoogle Scholar
  11. Deepu C, Raghavendra G, Rekha N, Mantelingu K, Rangappa K, Bhadregowda D (2015) Synthesis and biological evaluation of novel 1, 5-benzothiazepin-4 (5H)-ones as potent antiangiogenic and antioxidant agents. Curr Chem Lett 4:133–144CrossRefGoogle Scholar
  12. Emsley J, Hall D (1976) The chemistry of phosphorus. Harper and Row, LondonGoogle Scholar
  13. Friedmann E, Hauben E, Maylandt K, Schleeger S, Vreugde S, Lichtenthaler SF, Kuhn PH, Stauffer D, Rovelli G, Martoglio B (2006) SPPL2a and SPPL2b promote intramembrane proteolysis of TNFα in activated dendritic cells to trigger IL-12 production. Nat Cell Biol 8:843–848PubMedCrossRefGoogle Scholar
  14. Gacche RN (2015) Compensatory angiogenesis and tumor refractoriness. Oncogenesis 4:e153PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gacche RN, Assaraf YG (2018) Redundant angiogenic signaling and tumor drug resistance. Drug Resist Update 36:47–76CrossRefGoogle Scholar
  16. Gacche RN, Meshram RJ (2013) Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. Prog Biophys Mol Biol 113:333–354PubMedCrossRefGoogle Scholar
  17. Gacche RN, Meshram RJ (2014) Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta 1846:161–179PubMedGoogle Scholar
  18. He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, Cancilla MT, Wang J, Lugovskoy AA, Yoburn JC, Fung AD (2005) Small-molecule inhibition of TNF-α. Science 310:1022–1025PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hirschmann R, Smith AB, Taylor CM, Benkovic PA, Taylor SD, Yager KM, Sprengeler PA, Benkovic SJ (1994) Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids. Science 265:234–237PubMedCrossRefPubMedCentralGoogle Scholar
  20. Honore S, Pasquier E, Braguer D (2005) Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci 62:3039–3056PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hossain MM, Shaha SK, Aziz F (2009) Antioxidant potential study of some synthesized N-heterocycles. Bangladesh Med Res Counc Bull 35:49–52PubMedCrossRefPubMedCentralGoogle Scholar
  22. Huang J, Chen R (2000) An overview of recent advances on the synthesis and biological activity of α‐aminophosphonic acid derivatives. Heteroat Chem 11:480–492CrossRefGoogle Scholar
  23. Ikeda Y, Takano N, Matsushita H, Shiraki Y, Koide T, Nagashima R, Fujimura Y, Shindo M, Suzuki S, Iwasaki T (1979) Pharmacological studies on a new thymoleptic antidepressant, 1-[3-(dimethylamino) propyl]-5-methyl-3-phenyl-1H-indazole (FS-32). Arzneimittelforschung 29:511–520PubMedPubMedCentralGoogle Scholar
  24. Jadhav SG, Meshram RJ, Gond DS, Gacche RN (2013) Inhibition of growth of Helicobacter pylori and its urease by coumarin derivatives: molecular docking analysis. J Pharm Res 7:705–711Google Scholar
  25. Jain RK (2008) Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8:309–316PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kamble RD, Meshram RJ, Hese SV, More RA, Kamble SS, Gacche RN, Dawane BS (2016) Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Comput Biol Chem 61:86–96PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kamble S, Utage B, Mogle P, Kamble R, Hese S, Dawane B, Gacche R (2016) Evaluation of curcumin capped copper nanoparticles as possible inhibitors of human breast cancer cells and angiogenesis: a comparative study with native curcumin. AAPS PharmSciTech 17:1030–1041PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kasiotis KM, Tzanetou EN, Haroutounian SA (2014) Pyrazoles as potential anti-angiogenesis agents: a contemporary overview. Front Chem 2:78PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kong B, Seog JH, Graham LM, Lee SB (2011) Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine 6:929–941PubMedCrossRefPubMedCentralGoogle Scholar
  30. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786PubMedCrossRefGoogle Scholar
  31. Liang CP, Chang CH, Liang CC, Hung KY, Hsieh CW (2014) In vitro antioxidant activities, free radical scavenging capacity, and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis (Pers.) Ames. Molecules 19:4681–4694PubMedPubMedCentralCrossRefGoogle Scholar
  32. Li X, Chu S, Feher VA, Khalili M, Nie Z, Margosiak S, Nikulin V, Levin J, Sprankle KG, Tedder ME, Almassy R (2003) Structure-based design, synthesis, and antimicrobial activity of indazole-derived SAH/MTA nucleosidase inhibitors. J Med Chem 46:5663–5673PubMedCrossRefGoogle Scholar
  33. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4:118PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ma L, Gong H, Zhu H, Ji Q, Su P, Liu P, Cao S, Yao J, Jiang L, Han M, Ma X (2014) A novel small-molecule TNFα inhibitor attenuates inflammation in a hepatitis mouse model. J Biol Chem 289:12457–12466PubMedPubMedCentralCrossRefGoogle Scholar
  35. Maier L, Spoerri H (1991) Organic phosphorus compounds 96.1 resolution of 1-amino-2-(4-fluorophenyl) ethylphosphonic acid as well as some di-and tripeptides. Phosphorus Sulfur Silicon Relat Elem 61:69–75CrossRefGoogle Scholar
  36. Mirossay L, Varinská L, Mojžiš J (2017) Antiangiogenic effect of flavonoids and chalcones: an update. Int J Mol Sci 19:27PubMedCentralCrossRefGoogle Scholar
  37. Miteva MA, Guyon F, Tufféry P (2010) Frog2: efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res 38:622–627CrossRefGoogle Scholar
  38. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  39. Natchev IA (1988) Synthesis, enzyme-substrate interaction and herbicidal activity of phosphoryl analogues of glycine. Liebigs Ann Chem 1988:861–867CrossRefGoogle Scholar
  40. Pellegrini F, Budman DR (2005) Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest 23:264–273PubMedCrossRefPubMedCentralGoogle Scholar
  41. Picciola G, Ravenna F, Carenini G, Gentili P, Riva M (1981) Heterocyclic compounds containing the residue of a 4-aminophenylalkanoic acid with potential anti-inflammatory activity. IV. Derivatives of 2-phenyl-2H-indazole. Farm Sci 36:1037–1056Google Scholar
  42. Rodgers JD, Johnson BL, Wang H, Greenberg RA, Erickson-Viitanen S, Klabe RM, Cordova BC, Rayner MM, Lam GN, Chang CH (1996) Potent cyclic urea HIV protease inhibitors with benzofused heterocycles as P2/P2′ groups. Bioorg Med Chem Lett 6:2919–2924CrossRefGoogle Scholar
  43. Saczewski F, Hudson AL, Tyacke RJ, Nutt DJ, Man J, Tabin P, Saczewski J (2003) 2-(4, 5-Dihydro-1H-imidazol-2-yl) indazole (indazim) derivatives as selective I2 imidazoline receptor ligands. Eur J Pharm Sci 20:201–208PubMedCrossRefPubMedCentralGoogle Scholar
  44. Traverse JF, Feigelson GB, Ruchelman AL, Liu J, Liu H, Ma C, Liu D, Zhang S, (2015) PCT Int. Appl. WO2014018866Google Scholar
  45. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74PubMedPubMedCentralCrossRefGoogle Scholar
  46. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel 8:127–134CrossRefGoogle Scholar
  47. Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H (2017) Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 267:100–118PubMedPubMedCentralCrossRefGoogle Scholar
  48. Wang H, Oo Khor T, Shu L, Su ZY, Fuentes F, Lee JH, Tony Kong AN (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 12:1281–1305PubMedPubMedCentralCrossRefGoogle Scholar
  49. Wang X, Ge J, Wang K, Qian J, Zou Y (2006) Evaluation of MTT assay for measurement of emodin-induced cytotoxicity. Assay Drug Dev Technol 4:203–207PubMedCrossRefPubMedCentralGoogle Scholar
  50. Wang X, Xia Y, Liu L, Liu M, Gu N, Guang H, Zhang F (2010) Comparison of MTT assay, flow cytometry, and RT‐PCR in the evaluation of cytotoxicity of five prosthodontic materials. J Biomed Mater Res- Part B Appl Biomater 95:357–364PubMedCrossRefPubMedCentralGoogle Scholar
  51. Wayne KK, James OE, Richard C, William DK (2012) PCT Int. Appl. WO2012118812Google Scholar
  52. Workman P, Kaye SB (2002) Translating basic cancer research into new cancer therapeutics. Trends Mol Med 8:S1–S9PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ajay S. Sawant
    • 1
  • Sonali S. Kamble
    • 2
  • Parshuram M. Pisal
    • 1
  • Rohan J. Meshram
    • 3
  • Sanjay S. Sawant
    • 1
  • Vilas A. Kamble
    • 4
  • Vinod T. Kamble
    • 5
    Email author
  • Rajesh N. Gacche
    • 6
    Email author
  1. 1.School of Chemical SciencesSwami Ramanand Teerth Marathwada UniversityNandedIndia
  2. 2.School of Life SciencesSwami Ramanand Teerth Marathwada UniversityNandedIndia
  3. 3.Bioinformatics CentreSavitribai Phule Pune UniversityPuneIndia
  4. 4.Department of MicrobiologyAdarsha MahavidyalayaAmaravatiIndia
  5. 5.Organic Chemistry Research Laboratory, Department of ChemistryInstitute of ScienceNagpurIndia
  6. 6.Department of BiotechnologySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations