Nitroheterocyclic derivatives: privileged scaffold for drug development against Chagas disease

  • Cauê Benito ScarimEmail author
  • Chung Man Chin
Review Article


Chagas disease or American trypanosomiasis is a major public health problem in Latin America. Approximately seven million people are currently infected worldwide. Despite the efforts to develop new drugs, only two nitroheterocyclic drugs (nifurtimox and benznidazole) are available for the treatment of Chagas disease, These drugs have been available since the 1970s, and no new drugs have been approved. Due to the lack of alternatives for the treatment of this disease, this review describes recent advances (2013–2019) concerning nitroheterocyclic compounds with activity against T. cruzi parasites, as well as new perspectives for future research.


Chagas disease T. cruzi Nitro compounds New drugs 



This work was financed in part by the Coordenação de Aperfeiçoamento Pessoal de Nível Superior—Brasil (CAPES)—Finance code 001. Moreover, the authors would like to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—2016/10847-9) for the research fellowship assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2019_2453_MOESM1_ESM.pdf (313 kb)
Supplementary Information
44_2019_2453_MOESM2_ESM.pdf (331 kb)
Letter to reviewers


  1. Almeida TC, Ribeiro LHG, dos Santos LBF et al. (2018) Synthesis, in vtiro and in vivo anti-Trypanosoma cruzi and toxicological activities of nitroaromatic Schiff bases. Biomed Pharmacother 108:1703–1711CrossRefGoogle Scholar
  2. Andrade MC, Oliveira MDF, Nagao-Dias AT et al (2013) Clinical and serological evolution in chronic Chagas disease patients in a 4-year pharmacotherapy follow-up: a preliminary study. Rev Soc Bras Med Trop 46:
  3. Arias DG, Herrera FE, Garay AS et al. (2017) Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase. Eur J Med Chem 125:1088–1097CrossRefGoogle Scholar
  4. Blau L, Menegon RF, Trossini GHG et al. (2013) Design, synthesis and biological evaluation of new aryl thiosemicarbazone as antichagasic candidates. Eur J Med Chem 67:142–151. CrossRefPubMedGoogle Scholar
  5. Britta EA, Scariot DB, Falzirolli H et al. (2015) 4-Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi. Parasitology 142:978–988. CrossRefPubMedGoogle Scholar
  6. Castro JA, DeMecca MM, Bartel LC (2006) Toxic side effects of drugs used to treat chagas’ disease (american trypanosomiasis). Hum Exp Toxicol 25:471–479. CrossRefPubMedGoogle Scholar
  7. Chen M, Borlak J, Tong W (2013) High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology 58:388–396CrossRefGoogle Scholar
  8. Chung MC, Carvalho Güido RV, Favarato Martinelli T et al. (2003) Synthesis and in vitro evaluation of potential antichagasic hydroxymethylnitrofurazone (NFOH-121): a new nitrofurazone prodrug. Bioorg Med Chem 11:4779–4783. CrossRefPubMedGoogle Scholar
  9. Costa LB, De Oliveira Cardoso MV, De Oliveira Filho GB et al. (2016) Compound profiling and 3D-QSAR studies of hydrazone derivatives with activity against intracellular Trypanosoma cruzi. Bioorg Med Chem 24:1608–1618. CrossRefPubMedGoogle Scholar
  10. Curatolo W (1998) Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharm Sci Technol Today 1:387–393. CrossRefGoogle Scholar
  11. Davies C, Cardozo RM, Negrette OS et al. (2010) Hydroxymethylnitrofurazone is active in a murine model of Chagas’ disease. Antimicrob Agents Chemother 54:3584–3589. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Davies C, Dey N, Negrette OS et al. (2014) Hepatotoxicity in mice of a novel anti-parasite drug candidate hydroxymethylnitrofurazone: a comparison with benznidazole. PLoS Negl Trop Dis 8:e3231. CrossRefPubMedPubMedCentralGoogle Scholar
  13. de Andrade ALSS, Zicker F, de Oliveira RM et al. (1996) Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 348:1407–1413. CrossRefPubMedGoogle Scholar
  14. De Andrade P, Galo OA, Carvalho MR et al. (2015) 1,2,3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi. Bioorganic. Med Chem 23:6815–6826. CrossRefGoogle Scholar
  15. Dias LC, Dessoy MA, Silva JJN et al. (2009) Quimioterapia Da Doença de Chagas: Estado da Arte e Perspectivas no Desenvolvimento de Novos fármacos. Quim Nov 32:2444–2457CrossRefGoogle Scholar
  16. DNDi (2019) Drugs for neglected diseases initiative (DNDi), Neglected Tropical Diseases. (Accessed 21 August 2019).
  17. Do Amaral AT, Andrade CH, Kümmerle AE, Guido RVC (2017) A evolução da Química Medicinal no Brasil: Avanços nos 40 anos da Sociedade Brasileira de Química. Quim Nova 40:694–700. CrossRefGoogle Scholar
  18. Ekins S, de Siqueira-Neto JL, McCall L-I et al. (2015) Machine learning models and pathway genome data base for trypanosoma cruzi drug discovery. PLoS Negl Trop Dis 9:e0003878. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Elias PR, Coelho GS, Xavier VF et al. (2016) Synthesis of xylitan derivatives and preliminary evaluation of in vitro trypanocidal activity. Molecules 21:1–13. CrossRefGoogle Scholar
  20. Fernandez ML, Riarte AR, Marson ME et al. (2016) Pharmacokinetic and pharmacodynamics responses in adult patients with Chagas disease treated with a new formulation of benznidazole. Mem Inst Oswaldo Cruz 111:218–221. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ferreira EI (2012) Planejamento de Fármacos na Área de Doença de Chagas: Avanços e Desafios Planejamento de Fármacos na Área de Doença de Chagas. Avanços e Desafios 4:225–246Google Scholar
  22. Fonseca-Berzal C, Ibáñez-Escribano A, Reviriego F et al. (2016) Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl-5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H-indazoles. Eur J Med Chem 115:295–310. CrossRefPubMedGoogle Scholar
  23. Francisco AF, Jayawardhana S, Lewis MD et al. (2016) Nitroheterocyclic drugs cure experimental Trypanosoma cruzi infections more effectively in the chronic stage than in the acute stage. Sci Rep 6:35351. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Francisco AF, Lewis MD, Jayawardhana S et al. (2015) Limited ability of posaconazole to cure both acute and chronic trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob Agents Chemother 59:4653–4661. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gomes PAT, de M, Oliveira AR, De Oliveira Cardoso MV et al. (2016) Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi. Eur J Med Chem 111:46–57. CrossRefPubMedGoogle Scholar
  26. Guido RVC, Ferreira EI, Nassute JC, Varanda EA, Chung MC (2001) Diminuição da atividade mutagênica do pró-fármaco NFOH-121 em relação ao nitrofural (nitrofurazona). Rev Ciências Farm 22:319–333Google Scholar
  27. Lancaster JR, (2015) Nitric oxide: a brief overview of chemical and physical properties relevant to therapeutic applications Futur Sci OA 1:FSO59. CrossRefGoogle Scholar
  28. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decisionmaking in medicinal chemistry. Nat Rev Drug Disco 6:881–902. CrossRefGoogle Scholar
  29. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in discovery and development Settings. Adv Drug Deliv Rev 46:3–26CrossRefGoogle Scholar
  30. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and developmental settings. Adv Drug Deliv Rev 23:3–25. CrossRefGoogle Scholar
  31. Manjunatha UH, Smith OW (2015) Perspective: challenges and opportunities in TB drug discovery from phenotypic screening. Bioorg Med Chem 23:5087–5097. CrossRefPubMedGoogle Scholar
  32. Maya JD, Orellana M, Ferreira J et al (2010) Chagas disease: present status of pathogenic mechanisms and chemotherapy. Biol Res 323–231.
  33. Moreno-Rodríguez A, Salazar-Schettino PM, Bautista JL et al. (2014) In vitro antiparasitic activity of new thiosemicarbazones in strains of Trypanosoma cruzi. Eur J Med Chem 87:23–29. CrossRefPubMedGoogle Scholar
  34. Moreno-Viguri E, Jiménez-Montes C, Martín-Escolano R et al. (2016) In vitro and in vivo anti-trypanosoma cruzi activity of new arylamine mannich base-type derivatives. J Med Chem 59:10929–10945. CrossRefPubMedGoogle Scholar
  35. Morillo CA, Marin-Neto JA, Avezum A et al. (2015) Randomized trial of benznidazole for chronic chagas’ cardiomyopathy. N Engl J Med 2015:1295–1306. 10.1056/NEJMoa1507574Google Scholar
  36. Olmo F, Marin C, Rosales MJ et al. (2015) Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur J Med Chem 106:106–119. CrossRefPubMedGoogle Scholar
  37. Palace-Berl F, Pasqualoto KFM, Zingales B et al. (2018) Investigating the structure-activity relationships of N’-[(5-nitrofuran-2-yl) methylene] substituted hydrazides against Trypanosoma cruzi to design novel active compounds. Eur J Med Chem 144:29–40Google Scholar
  38. Pan P, Vermelho AB, Rodrigues GC et al. (2013) Cloning, characterization, and sulfonamide and thiol inhibition studies of an a-carbonic anhydrase from Trypanosoma cruzi, the causative agent of chagas disease. J Med Chem 56:1761–1771. CrossRefPubMedGoogle Scholar
  39. Papadopoulou MV, Bloomer WD, Rosenzweig HS et al. (2014) Novel nitro(triazole/imidazole)-based heteroarylamides/sulfonamides as potential antitrypanosomal agents. Eur J Med Chem 87:79–88. CrossRefPubMedGoogle Scholar
  40. Papadopoulou MV, Bloomer WD, Rosenzweig HS et al. (2015) Discovery of potent nitrotriazole-based antitrypanosomal agents: in vitro and in vivo evaluation. Bioorg Med Chem 23:6467–6476. CrossRefPubMedGoogle Scholar
  41. Paula FR, Serrano SHP, Tavares LC (2009) Aspectos mecanísticos da bioatividade e toxicidade de nitrocompostos. Quim Nova 32:1013–1020CrossRefGoogle Scholar
  42. Rassi A, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402. CrossRefPubMedGoogle Scholar
  43. Scarim CB, de Andrade CR, da Rosa JA et al. (2018) Hydroxymethylnitrofurazone treatment in indeterminate form of chronic Chagas disease: reduced intensity of tissue parasitism and inflammation—a histopathological study. Int J Exp Pathol 99:236–248. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Serafim RAM, Gonçalves JE, de Souza FP et al. (2014) Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-trypanosoma cruzi activity. Eur J Med Chem 82:418–425CrossRefGoogle Scholar
  45. Sherlock IA (1999) Epidemiology and dinamics of the vectorial transmission of Chagas disease. Mem Inst Oswaldo Cruz 4:385–386CrossRefGoogle Scholar
  46. Da Silva GMS, Mediano MFF, Brasil PEAA Do et al. (2014) A clinical adverse drug reaction prediction model for patients with chagas disease treated with benznidazolE. Antimicrob Agents Chemother 58:6371–6377. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Silva FT, Franco CH, Favaro DC et al. (2016) Design, synthesis and antitrypanosomal activity of some nitrofurazone 1,2,4-triazolic bioisosteric analogues. Eur J Med Chem 121:553–560. CrossRefPubMedGoogle Scholar
  48. Sosa-Estani S, Segura E, Ruiz A et al. (1998) Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas’ disease. Am J Trop Med Hyg 59:526–9CrossRefGoogle Scholar
  49. Soy D, Aldasoro E, Guerrero L et al. (2015) Population pharmacokinetics of benznidazole in adult patients with Chagas disease. Antimicrob Agents Chemother 59:3342–3349. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tarcsay A, Keseru GM (2013) Contributions of molecular properties to drug promiscuity. J Med Chem 56:1789–1795. CrossRefPubMedGoogle Scholar
  51. Tetko IV (2005) Computing chemistry on the web. Drug Discov Today 10:1497–1500. CrossRefPubMedGoogle Scholar
  52. Thompson AM, Blaser A, Palmer BD et al. (2017) 6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]thiazoles: Facile synthesis and comparative appraisal against tuberculosis and neglected tropical diseases. Bioorg Med Chem Lett 27:2583–2589. CrossRefPubMedGoogle Scholar
  53. Trossini GHG, Malvezzi A, T-do Amaral A et al. (2010) Cruzain inhibition by hydroxymethylnitrofurazone and nitrofurazone: investigation of a new target in Trypanosoma cruzi. J Enzym Inhib Med Chem 25:62–67. CrossRefGoogle Scholar
  54. Waring MJ (2010) Lipophilicity in drug discovery. Expet Opin Drug Disco 5:235–248. CrossRefGoogle Scholar
  55. Wenlock MC, Barton P (2013) In silico physicochemical parameter predictions. Mol Pharm 10:1224–1235. CrossRefPubMedGoogle Scholar
  56. World and Health Organization (WHO) (2019) Neglected tropical diseases. World and Health Organization (WHO). Accessed 21 August 2019
  57. WHO (2002). Control of Chagas disease: second report of the WHO expert committee. World Health Organization (2000: Brasilia, Brazil). Geneva, World Health Organization. 905:109Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil

Personalised recommendations