Advertisement

Synthesis, α-amylase inhibition and molecular docking study of bisindolylmethane sulfonamide derivatives

  • Muhammad TahaEmail author
  • Tayyaba Noreen
  • Syahrul Imran
  • Fasial Nawaz
  • Sridevi Chigurupati
  • Manikandan Selvaraj
  • Fazal Rahim
  • Nor Hadiani Ismail
  • Ashok Kumar
  • Ashik Mosaddik
  • Abdullah M. Alghamdi
  • Yousif Abdulrahman nasser alqahtani
  • Abdulaziz Abdulrahman nasser alqahtani
Original Research
  • 41 Downloads

Abstract

We have synthesized nineteen (119) bisindolylmethane sulfonamide analogs, characterized by different spectroscopic techniques such as 1HNMR and EI-MS and tested for α-amylase inhibitory potential. All compounds showed excellent to moderate degree of α-amylase inhibitory potential with IC50 values ranging between 1.192 ± 0.51 to 3.057 ± 0.18 μM as equated with standard acarbose (IC50 values 0.83 ± 0.36 μM). Among the series, six analogs such as 1, 4, 5, 6, 10, and 14 showed potent α-amylase inhibition with IC50 values 1.747 ± 0.2, 1.208 ± 0.15, 1.192 ± 0.51, 1.858 ± 0.08, 1.358 ± 0.27 and 1.527 ± 0.17 μM, respectively, as equated with standard acarbose. The structure-activity relationship based upon different substituents on phenyl part. Molecular docking studies performed to recognize the binding interaction of the most active compounds.

Keywords

Synthesis Bisindolylmethane sulfonamide α-Amylase Inhibitory Potential Molecular docking SAR 

Notes

Acknowledgements

We would like to thank IRMC and Imam Abdulrahman Bin Faisal University for Lab facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2019_2431_MOESM1_ESM.pdf (7.8 mb)
Supplementary Information.

References

  1. Adegboye AA, Khan KM, Salar U, Aboaba SA, Chigurupati S, Fatima I, Taha M, Wadood A, Mohammad JI, Khan H, Perveen S (2018) 2-Aryl benzimidazoles: synthesis, in vitro α-amylase inhibitory activity, and molecular docking study. Eur J Med Chem 150:248–260CrossRefGoogle Scholar
  2. Adisakwattana S, Lerdsuwankij O, Poputtachai U, Minipun A, Suparpprom C (2011) Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Plant Foods Hum Nutr 66:143–148CrossRefGoogle Scholar
  3. Ali S, Ali N, Ahmad DB, Pradhan V, Farooqui M (2013) Chemistry and biology of indoles and indazoles: a mini review. Med Chem 13:1792–1800Google Scholar
  4. Anouar EH, Raweh S, Bayach I, Taha M, Baharudin MS, Meo FD, Hasan MH, Adam A, Ismail NH, Weber JF, Trouillas P (2013) Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action. J Comput Aided Mol Des 27:951–964CrossRefGoogle Scholar
  5. Asghari A, Ameri M, Radmannia S, Rajabi M, Bakherad M, Nematollahi D (2014) None-catalyst and clean synthesis of symmetric and asymmetric indoles from electrochemical oxidation of 4-aminophenol and p-phenylenediamine in the presence of malononitrile in green media. J Electro Chem 733:47–52CrossRefGoogle Scholar
  6. Aziz AN, Taha M, Ismail NH, Anouar EH, Yousuf S, Jamil W, Awang K, Ahmat N, Khan KM, Kashif SM (2014) Synthesis, crystal structure, DFT studies and evaluation of the antioxidant activity of 3,4-dimethoxybenzenamine schiff bases. Molecules 19:8414–8433CrossRefGoogle Scholar
  7. Bale AT, Khan KM, Salar U, Chigurupati S, Fasina T, Ali F, Wadood A, Taha M, Nanda SS, Ghufran M, Perveen S (2018) Chalcones and bis-chalcones: as potential α-amylase inhibitors; synthesis, in vitro screening, and molecular modelling studies. Bioorg Chem 79:179–189CrossRefGoogle Scholar
  8. Gollapalli M, Taha M, Ullah H, Nawaz M, AlMuqarrabun LMR, Rahim F, Qureshi F, Mosaddik A, Ahmat N, Khan KM (2018) Synthesis of bis-indolylmethane sulfonohydrazides derivatives as potent α-glucosidase inhibitors. Bioorg Chem 80:112–120CrossRefGoogle Scholar
  9. Imran S, Taha M, Selvaraj M, Ismail NH, Chigurupati S, Mohammad JI (2017) Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorg Chem 73:121–128CrossRefGoogle Scholar
  10. Jarald E, Joshi SB, Jain DC (2008) Diabetes and herbal medicines. Iran J Pharma Ther 7:97–106Google Scholar
  11. Javid MT, Rahim F, Taha M, Nawaz M, Wadood A, Ali M, Mosaddik A, Shah SAA, Farooq RK (2018) Synthesis, SAR elucidations and molecular docking study of newly designed isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase. Bioorg Chem 79:323–333CrossRefGoogle Scholar
  12. Khan KM, Taha M, Naz F, Khan M, Rahim F, Samreen, Perveen S, Choudhary MI (2011) Synthesis and in vitro leishmanicidal activity of disulfide derivatives. Med Chem 7:704–710CrossRefGoogle Scholar
  13. Khan KM, Taha M, Rahim F, Ali M, Jamil W, Perveen S, Choudhary MI (2010) An improved method for the synthesis of disulfides by periodic acid and sodium hydrogen sulfite in water. Lett Org Chem 7:244CrossRefGoogle Scholar
  14. Khan KM, Taha M, Ali M, Perveen S (2009) A mild and alternative approach towards symmetrical disulfides using H3IO5/NaHSO3 combination. Lett Org Chem 6:319–320CrossRefGoogle Scholar
  15. Khan KM, Ali M, Taha M, Perveen S, Choudhary MI, Voelter W (2008) An expedient and selective approach towards disulfides using sodium bromate/sodium hydrogen sulfite reagent. Lett Org Chem 5:432–434CrossRefGoogle Scholar
  16. Khan KM, Naz F, Taha M, Khan A, Perveen S, Choudhary MI, Voelter W (2014) Synthesis and in vitro urease inhibitory activity of N,N’-disubsituted thioureas. Eur J Med Chem 74:314–323CrossRefGoogle Scholar
  17. Kwon YI, Vattem DA, Shetty K (2006) Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacif J Clin Nutr 15:107–118Google Scholar
  18. Liu T, Song L, Wang H, Huang D (2011) A high-throughput assay for quantification of starch hydrolase inhibition based on turbidity measurement. J Agric Food Chem 59:9756–9762CrossRefGoogle Scholar
  19. Musharraf SG, Bibi A, Shahid N, Najam-ul-Haq M, Khan M, Taha M, Mughal UR, Khan KM (2012) Acylhydrazide and isatin schiff bases as alternate UV laser desorption ionization (LDI) matrices for low molecular weight (LMW) peptides analysis. Am J Ana Chem 3:779–789CrossRefGoogle Scholar
  20. Nencki M (1874) On a combination of sulphocarbamide with ethyl oxalate. Deut Chem Ges Ber vii:779–780CrossRefGoogle Scholar
  21. Noreen T, Taha M, Imran S, Chigurupati S, Rahim F, Selvaraj M, Ismail NH, Mohammad JI, Ullah H, Nawaz F, Irshad M, Ali M (2017) Synthesis of alpha amylase inhibitors based on privileged indole scaffold. Bioorg Chem 72:248–255CrossRefGoogle Scholar
  22. Nematollahi D, Hedayatfar V (2011) Diversity in electrochemical oxidation of dihydroxybenzenes in the presence of 1-methylindole. J Chem Sci 123:709–717CrossRefGoogle Scholar
  23. Pelletier SW (1999) Alkaloids: Chemical and Biological Perspectives. Springer-Verlag, New York, NY, SpringerGoogle Scholar
  24. Sales PM, de Souza PM, Simeoni LA, Magalhães PDO, Silveira D (2012) α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharmace Sci 15:141–183CrossRefGoogle Scholar
  25. Salar U, Khan KM, Chigurupati S, Taha M, Wadood A, Vijayabalan S, Ghufran M, Perveen S (2017) New hybrid hydrazinylthiazole substituted chromones: as potential α-amylase inhibitors and radical (DPPH & ABTS) scavengers. Sci Rep 7:16980CrossRefGoogle Scholar
  26. Shaheen RM, Davis DW, Liu W (1999) Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastases and induces tumor and endothelial cell apoptosis. Cancer Res 59:5412–5416Google Scholar
  27. Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) α-Amylases from microbial sources–An overview on recent developments. Food Techn Biotech 44:173–184Google Scholar
  28. Stöckly F (1881) Zur Kenntniss der Fäulnissprodukte des Gehirns. J Prakt Chem 24:17–24CrossRefGoogle Scholar
  29. Sundberg RJ (1996) The Chemistry of Indoles. Academic Press, New York, NYGoogle Scholar
  30. Tadera K, Minami Y, Takamatsu K, Matsuoka T (2006) Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J Nutr Sci Vitam 52:149–153CrossRefGoogle Scholar
  31. Taha M, Naz H, Rasheed S, Ismail NH, Rahman AA, Yousuf S, Choudhary MI (2014) Synthesis of 4-methoxybenzoylhydrazones and evaluation of their antiglycation activity. Molecules 19:1286–1301CrossRefGoogle Scholar
  32. Taha M, Ismail NH, Jamil W, Yousuf S, Jaafar FM, Ali MI, Kashif SM, Hussain E (2013) SynthEsis, Evaluation Of Antioxidant Activity And Crystal Structure Of 2,4-dimethylbenzoylhydrazones. Molecules 18:10912–10929CrossRefGoogle Scholar
  33. Taha M, Javid MT, Imran S, Selvaraj M, Chigurupati S, Ullah H, Rahim F, Khan F, Mohammad JI (2017) Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorg Chem 74:179–186CrossRefGoogle Scholar
  34. Taha M, Irshad M, Imran S, Rahim F, Selvaraj M, Almandil NB, Ibrahim M (2019) Thiazole based carbohydrazide derivatives as α-amylase inhibitor and their molecular docking study. Hetero Chem 2019:7502347CrossRefGoogle Scholar
  35. Zhang L, Hogan S, Li J, Sun S, Canning C, Zheng SJ, Zhou K (2011) Grape skin extract inhibits mammalian intestinal α-glucosidase activity and suppresses postprandial glycemic response in streptozocin-treated mic. Food Chem 126:466–471CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Taha
    • 1
    Email author
  • Tayyaba Noreen
    • 2
    • 3
  • Syahrul Imran
    • 3
    • 4
  • Fasial Nawaz
    • 2
  • Sridevi Chigurupati
    • 5
  • Manikandan Selvaraj
    • 6
  • Fazal Rahim
    • 7
  • Nor Hadiani Ismail
    • 3
    • 4
  • Ashok Kumar
    • 8
  • Ashik Mosaddik
    • 1
  • Abdullah M. Alghamdi
    • 9
  • Yousif Abdulrahman nasser alqahtani
    • 10
  • Abdulaziz Abdulrahman nasser alqahtani
    • 11
  1. 1.Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC)University of DammamDammamSaudi Arabia
  2. 2.Department of ChemistryUniversity of WahWah CanttPakistan
  3. 3.Atta-ur-Rahman Institute for Natural Product DiscoveryUniversiti Teknologi MARA (UiTM)Bandar Puncak AlamMalaysia
  4. 4.Faculty of Applied ScienceUiTM Shah AlamShah AlamMalaysia
  5. 5.Department of Medicinal Chemistry and Pharmacognosy, College of PharmacyQassim UniversityBuraidahSaudi Arabia
  6. 6.School of EngineeringMonash University (Malaysia Campus)Bandar SunwayMalaysia
  7. 7.Department of ChemistryHazara UniversityMansehraPakistan
  8. 8.Department of Pharmaceutical Chemistry, Faculty of PharmacyAIMST UniversityBedongMalaysia
  9. 9.Management Information Systems, College of Applied Studies and Community ServiceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  10. 10.King Fahad specialist hospital in Dammam, (general surgery resident)DammamSaudi Arabia
  11. 11.College of Medicine Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations