Medicinal Chemistry Research

, Volume 28, Issue 10, pp 1591–1600 | Cite as

Nitrogenous phytoconstituents of genus Moringa: spectrophotometrical and pharmacological characteristics

  • Alaadin E. El-HaddadEmail author
  • Eman M. El-Deeb
  • Mahmoud A. Koheil
  • Soad M. Abd El-Khalik
  • Hala M. El- Hefnawy
Review Article


Moringa Adans. (Moringaceae) is a multipurpose plant showing uncountable uses due to nutritional, folklore, and pharmacological worldwide applications. Moringa is rich in nitrogenous compounds, viz., glucosinolates, thiocarbamates, cyanogens, isothiocyanates, and alkaloids. Plants of this genus are a good source of vitamins, β-carotene, proteins, and various phenolics. This review focuses on spectrophotometrical characteristics of nitrogenous compounds along with their pharmacological properties. Aligning traditional usage with scientific assessment, Moringa have compounds with a great commercial potential especially nitrogenous compounds. We hope to support a new research on Moringa, especially on those species whose biological properties have not been studied to date moreover explore the mechanisms at the molecular level.


Moringa Glucosinolates Thiocarbamates Cyanogens Isothiocyanates 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Anwar F, Rashid U (2007) Physico-chemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pak J Bot 39(5):1443–1453Google Scholar
  2. Ayyari M et al. (2014) Antitrypanosomal isothiocyanate and thiocarbamate glycosides from Moringa oleifera. Planta Medica 80(01):86–89Google Scholar
  3. Baky H, El-baroty G (2013) Characterization of Egyptian Moringa peregrine seed oil and its bioactivities. Int J Manag Sci Bus Res 2(7):98–108Google Scholar
  4. Bichi M (2013) A review of the applications of Moringa oleifera seeds extract in water treatment. Civ Environ Res 3:1–11Google Scholar
  5. Brown J, Morra M (2005) Glucosinolate containing seed meal as a soil amendment to control plant pests. National Renewable Energy Laboratory, Golden, CO (US)Google Scholar
  6. Brunelli D et al. (2010) The isothiocyanate produced from glucomoringin inhibits NF-KB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol 79(8):1141–1148CrossRefGoogle Scholar
  7. Cheenpracha S et al. (2010) Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorganic Med Chem 18(17):6598–6602CrossRefGoogle Scholar
  8. Chen G, Yang M, Kuo P, Lin M, Liao M (2014) Chemical constituents of Moringa oleifera and their cytotoxicity aganist doxorubicin-resistant human. Chem Nat Compd 50:154–156Google Scholar
  9. Chen K-H et al. (2012) Attenuation of the extract from Moringa oleifera on monocrotaline-induced pulmonary hypertension in rats. Chin J Physiol 55(1):22–30CrossRefGoogle Scholar
  10. Eilert U, Wolters B, Nahrstedt A (1981) The antibiotic principle of seeds of Moringa oleifera and Moringa stenopetala. Planta Med 42:55–61CrossRefGoogle Scholar
  11. Fahey J, Zalcmann A, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51CrossRefGoogle Scholar
  12. Faizi S et al. (1992) Isolation and structure elucidation of novel hypotensive agents, niazinin A, niazinin B, niazimicin and niaziminin A+ B from Moringa oleifera: The first naturally occurring thiocarbamates. J Chem Soc Perkin Trans 63:3237–3241CrossRefGoogle Scholar
  13. Faizi S et al. (1998) Hypotensive constituents from the pods of Moringa oleifera. Planta Med 64(03):225–228CrossRefGoogle Scholar
  14. Faizi S, Siddiqui B, Saleem R, Aftab K, Shaheen F, Gilani A (1998) Hypotensive constituents from the pods of Moringa oleifera. Planta Med 64:225–228CrossRefGoogle Scholar
  15. Faizi S, Siddiqui S, Saleem R, Husnain S, Noor F (1997) Isolation and structure elucidation of a novel glycoside niazidin from the pods of Moringa oleifera. J Nat Prod 60:1317–1321CrossRefGoogle Scholar
  16. Faizi S, Siddiqui B, Saleem R, Siddiqui S, Aftaba K, Gilani A (1994) Novel hypotensive agents, niazimin A, niazimin B, niazicin A and niazicin B from Moringa oleifera: isolation of first naturally occurring carbarnates. J Chem Soc Perkin Trans 57:168–170Google Scholar
  17. Faizi S, Siddiqui S, Saleem R, Siddiqui S, Aftab K (1994) Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure. J Nat Prod 5:1256–1261CrossRefGoogle Scholar
  18. Faizi S, Siddiqui S, Saleem R, Siddiqui S, Aftab K, Gilani A (1995) Fully acetylated carbamate and hypotensive thiocarbamate glycosides from Moringa oleifera. Phytochemistry 38:2–8CrossRefGoogle Scholar
  19. Galuppo M et al. (2015) 4 (α-L-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that defends cerebral tissue and prevents severe damage induced by focal ischemia/reperfusion. J Biol Regul Homeost Agents 29:343–356Google Scholar
  20. Galuppo M et al. (2015) Administration of 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate delays disease phenotype in SOD1G93A rats: a transgenic model of amyotrophic lateral sclerosis. BioMed Res Int 2015:1–12Google Scholar
  21. Gilani A, Aftab K, Suria A, Siddiqui S, Salem R, Siddiqui S, Faizi S (1994) Pharmacological studies on hypotensive and spasmolytic activities of pure compounds from Moringa oleifera. Phytother Res 8:87–91CrossRefGoogle Scholar
  22. Guevara A, Vargas C, Sakurai H, Fujiwara Y, Hashimoto K, Maoka T, Kozuka M, Ito Y, Tokuda H, Nishino H (1999) An antitumor promoter from Moringa oleifera lam. Mutat Res/Genet Toxicol Environ Mutagen 440:181–188CrossRefGoogle Scholar
  23. Gueyrard, D et al. (2002) Isolation and synthesis of 4-rhamno-glucosinalbin, the major glucosinolate from Moringa oleifera. In: Natural products in the new millennium: prospects and industrial application. Springer, Dordrecht, p 415–419Google Scholar
  24. Gupta S, Khanuja S, Shasany A, Darokar M (2005) Novel nitrile glycoside (niaziridin) useful as a bio-enhancer of drugs and nutrients, process of its isolation from Moringa oleifera. U.S. Patent No. 6,858,588Google Scholar
  25. Maldini M et al. (2014) Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry. J Mass Spectrom 49(9):900–910CrossRefGoogle Scholar
  26. Murakami A, Kitazono Y, Jiwajinda S, Koshimizu K, Ohigashi H (1998) Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein–Barr virus activation. Planta Med 64:319–323CrossRefGoogle Scholar
  27. Nikkon F, Saud Z, Rahman M, Haque M (2003) in vitro antimicrobial activity of the compound isolated from chloroform extract of Moringa oleifera lam. Pak J Biol Sci 6:1888–1890CrossRefGoogle Scholar
  28. Olson M (2002) Intergeneric relationships within the Caricaceae-Moringaceae Clade (Brassicales) and potential morphological synapomorphies of the clade and its families. Int J Plant Sci 163:51–65CrossRefGoogle Scholar
  29. Onyango L, Manguro A, Lemmen P (2007) Phenolics of Moringa oleifera leaves. Nat Prod Res 21:56–68CrossRefGoogle Scholar
  30. Park E-J et al. (2011) Inhibition of lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2′-O-acetyl-α-L-rhamnosyloxy) benzyl] isothiocyanate from Moringa oleifera. Nutr Cancer 63(6):971–982CrossRefGoogle Scholar
  31. Price M (1985) The Moringa Tree. ECHO Technical Note. Educational Concerns for Hunger Organization, N. Ft. Meyers, FLGoogle Scholar
  32. Rani A, Zahirah N, Husain K, Kumolosasi E (2018) Moringa genus: a review of phytochemistry and pharmacology. Front Pharmacol 9:108CrossRefGoogle Scholar
  33. Sahakitpichan P, Mahidol C, Disadee W, Ruchirawat S, Kanchanapoom T (2011) Unusual glycosides of pyrrole alkaloid and 4/-hydroxyphenylethanamide from leaves of Moringa oleifera. Phytochemistry 72:791–795CrossRefGoogle Scholar
  34. Sashidhara K, Rosaiah J, Tyagi E, Shukla R, Raghubir R, Rajendran S (2009) Rare Dipeptide and urea derivatives from roots of Moringa oleifera as potential anti-inflammatory and antinociceptive agents. Eur J Med Chem 44:432–436CrossRefGoogle Scholar
  35. Taeckholm V (1974) Students’ Flora of Egypt. Cairo University, Cooperative Printing, BeirutGoogle Scholar
  36. Tiloke C, Phulukdaree A, Chuturgoon AA (2013) The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement Altern Med 13(1):226CrossRefGoogle Scholar
  37. Vaughn S, Berhow M (2005) Glucosinolate hydrolysis products from various plant sources: ph effects, isolation, and purification. Ind Crops Prod 21:193–202CrossRefGoogle Scholar
  38. Verhoeven D, Verhagen H, Goldbohm R, van den B, Piet A, Poppel G (1997) A review of mechanisms underlying anticarcinogenicity by Brassica vegetables. Chem-Biol Interact 103:79–129CrossRefGoogle Scholar
  39. Villasenor I, Lim-Sylianco C, Dayrit F (1989) Mutagens from roasted seeds of Moringa oleifera. Mutat Res/Genet Toxicol 224:209–212CrossRefGoogle Scholar
  40. Waterman C, Cheng D, Rojas-Silva P, Poulev A, Dreifus J, Lila M, Raskin I (2014) Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry 103:114–122CrossRefGoogle Scholar
  41. Waterman C et al. (2015) Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice. Mol Nutr Food Res 59(6):1013–1024CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacognosy, Faculty of PharmacyOctober 6 UniversityGizaEgypt
  2. 2.Department of Pharmacognosy, Faculty of PharmacyHelwan UniversityCairoEgypt
  3. 3.Department of Pharmacognosy, Faculty of PharmacyCairo UniversityCairoEgypt

Personalised recommendations