Chemical constituents from Ginkgo biloba L. male flowers and their biological activities

  • Min Li
  • Zi-ming Xia
  • Bin Li
  • Ying Tian
  • Guang-jie Zhang
  • Chen Xu
  • Jun-xing DongEmail author
Original Research


From the male flowers of Ginkgo biloba L., 26 compounds were isolated and identified including 7-O-(β-d-glucopyranosyloxy)-5-hydroxy-1(3H)- isobenzofuranone (1), piperoside (2), 3-(4-hydroxy-3-methoxyphenyl)propane-1, 2-diol (3), ginkgolide B (4), ginkgolide C (5), hexyl-β-getiobioside (6), benzyl-β-d-xylopyranosyl-(1 → 6)-β-d-glucopyranoside (7), ginkgolic acid (8), kaempferol-3-O-[6′′′-O-p-coumaroyl-β-d-glucopyranosyl-(1 → 2)-α-l-rhamnopyrano-side] (9), quercetin-3-O-[6′′′-O-p-coumaroyl-β-d-glucopyranosyl-(1 → 2)-α-l-rhamnopyranoside (10), apigenin-7-O-β-d-glucoside (11), kaempferol-3-O-α-l-rhamnoside (12), kaempferol-3-O-rutinoside (13), quercetin-3-O-β-d- glucopyranoside (14), quercetin-3-O-α-l-rhamnoside (15), isorhamnetin-3-O-rutinoside (16), kaempferol-7-O-β-d-glucopyranoside (17), kaempferol-3-O-β-d-galactoside-4′-O-β-d-glucoside (18), isorhamnetin-3-O-β-d-glucopyranoside (19), rutin (20), kaempferol-4′-O-β-d-glucopyranoside (21), argaminolic A (22), 4,4′-dihydroxy-3,3′-imino-di-benzoic acid (23), nicotinamide (24), uracil (25), and capilliplactone (26). Among them, compounds 1, 2, 6, 7, 22, 23, and 26 were found in the class Ginkgopsida for the first time. Compounds 8, 11, and 21 showed better active inhibitory effects on NO production among the tested compounds. Compounds 8 and 11 also showed cytotoxicity on three cancer cells. Our phytochemical study of G. biloba flowers enriched the diversity of Ginkgo chemical compositions and may broaden its application in phytotherapy.


Ginkgo biloba flowers Chemical constituents Anti-inflammation Anti-proliferation 



We are grateful to Mrs Yan Wu of the Institute of Materia Medica in Chinese Academy of Medical Sciences for the NMR.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This article does not include any studies with human or animal subjects and no ethics approval is needed.

Supplementary material

44_2019_2394_MOESM1_ESM.docx (4.9 mb)
Supplementary Information.


  1. Avula B, Sagi S, Gafner S, Upton R, Wang YH, Wang M, Khan IA (2015) Identification of Ginkgo biloba supplements adulteration using high performance thin layer chromatography and ultra high performance liquid chromatography-diode array detector-quadrupole time of flight-mass spectrometry. Anal Bioanal Chem 407:7733–7746CrossRefPubMedGoogle Scholar
  2. Cao C, Su Y, Gao Y, Luo C, Yin L, Zhao Y, Chen H, Xu A (2018) Ginkgo biloba exocarp extract inhibits the metastasis of B16-F10 melanoma involving PI3K/Akt/NF-kappaB/MMP-9 signaling pathway. Evid Based Complement Altern Med 2018:1–11CrossRefGoogle Scholar
  3. Chai XY, Li P, Tang LY (2004) Studies on chemical constituents in dried buds of Lonicera confusa. China J Chin Mater Med 29:865–867Google Scholar
  4. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867CrossRefPubMedGoogle Scholar
  5. Gao JH, Shi GB, Song GQ, Shao Y, Zhou BN (1996) Further NMR investigation and conformational analysis of an acylated flavonol glucorhamnoside. Magn Reson Chem 34:249–254CrossRefGoogle Scholar
  6. Hu W, Wang G, Li P, Wang Y, Si CL, He J, Long W, Bai Y, Feng Z, Wang X (2014) Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-kappaB activation. Chem Biol Inter 224:108–116CrossRefGoogle Scholar
  7. Kang SS, Kim JS, Kwak WJ, Kim KH (1990) Flovonoids from the leaves of Ginkgo biloba. Kor J Pharm 21:111–120Google Scholar
  8. Kawahara E, Fujii M, Kato K, Ida Y, Akita H (2005) Chemoenzymatic synthesis of naturally occurring benzyl 6-O-glycosylb-β-glucopyranosides. Chem Pharm Bull 53:1058–1061CrossRefPubMedGoogle Scholar
  9. Kikuzaki H, Hara S, Kawai Y, Nakatani N (1999) Antioxidative phenylpropanoids from berries of Pimenta dioica. Phytochemistry 52:1307–1312CrossRefGoogle Scholar
  10. Kim MN, LeScao-Bogaert F, Paris M (1992) Flavonoids from Carthamus tinctorius flowers. Planta Med 58:285–286CrossRefPubMedGoogle Scholar
  11. Klika KD, Khallouki F, Owen RW (2014) Amino phenolics from the fruit of the Argan tree Argania spinosa (Skeels L.). Z für Naturforsch C 69:363–367CrossRefGoogle Scholar
  12. Koch E (2005) Inhibition of platelet activating factor (PAF)-induced aggregation of human thrombocytes by ginkgolides: considerations on possible bleeding complications after oral intake of Ginkgo biloba extracts. Phytomedicine 12:10–16CrossRefPubMedGoogle Scholar
  13. Kumar N, Gupta S, Chand Yadav T, Pruthi V, Kumar Varadwaj P, Goel N (2019) Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation. J Biomol Struct Dyn 37:2355–2369CrossRefPubMedGoogle Scholar
  14. Kumar N, Pruthi V, Goel N (2015) Structural, thermal and quantum chemical studies of p-coumaric and caffeic acids. J Mol Struct 1085:242–248CrossRefGoogle Scholar
  15. Lei J, Xiao YC, Wang WJ, Xi Z, Liu M, Ran J, Huang J (2012) Study on flavonoid chemical constituents contained in Memorialis hirta. China J Chin Mater Med 37:478–482Google Scholar
  16. Li M, Li B, Hou Y, Tian Y, Chen L, Liu S, Zhang N, Dong J (2019) Anti-inflammatory effects of chemical components from Ginkgo biloba L. male flowers on lipopolysaccharide-stimulated RAW264.7 macrophages. Phytother Res 2019:1–9Google Scholar
  17. Liu RH, Luo H, Li YL, Yang M, Xu XK, Li HL, Shen YH, Zhang C, Su J, Zhang WD (2009) N-containing compounds from the traditional Chinese medicine Chansu. Chem Nat Compd 45:599–600CrossRefGoogle Scholar
  18. Lou FC, Ling Y, Tang YP, Wang Y (2004) Isolation, purification and identification of Ginkgo terpene lactones. Chin J Nat Med 2:11–15Google Scholar
  19. Lu Y, Sun Y, Foo LY, McNabb WC, Molan AL (2000) Phenolic glycosides of forage legume Onobrychis viciifolia. Phytochemistry 55:67–75CrossRefPubMedGoogle Scholar
  20. Luyen BT, Tai BH, Thao NP, Yang SY, Cuong NM, Kwon YI, Jang HD, Kim YH (2014) A new phenylpropanoid and an alkylglycoside from Piper retrofractum leaves with their antioxidant and alpha-glucosidase inhibitory activity. Bioorg Med Chem Lett 24:4120–4124CrossRefPubMedGoogle Scholar
  21. Mohanta TK, Tamboli Y, Zubaidha PK (2014) Phytochemical and medicinal importance of Ginkgo biloba L. Nat Prod Res 28:746–752CrossRefPubMedGoogle Scholar
  22. Qiu J, Chen X, Netrusov AI, Zhou Q, Guo D, Liu X, He H, Xin X, Wang Y, Chen L (2017) Screening and identifying antioxidative components in Ginkgo biloba pollen by DPPH-HPLC-PAD coupled with HPLC-ESI-MS2. PLoS ONE 12:e0170141CrossRefPubMedGoogle Scholar
  23. Ren ZY, Qi HY, Shi YP (2008) Phytochemical investigation of Anaphalis lactea. Planta Med 74:859–863CrossRefPubMedGoogle Scholar
  24. Scheer T, Wichtl M (1987) On the occurrence of kaempfero1-4′-O-3-D-gIucopyranoside in Filipendula ulmaria and Allium cepa. Planta Med 53:573–574CrossRefPubMedGoogle Scholar
  25. Tian J, Liu Y, Chen K (2017) Ginkgo biloba extract in vascular protection: molecular mechanisms and clinical applications. Curr Vasc Pharm 15:532–548CrossRefGoogle Scholar
  26. Tian Y, Liu XQ, Dong JX (2009) Apigenin glycosides from Euphorbia humifusa wild. Acta Pharm Sin 44:496–499Google Scholar
  27. Xie C, Xu LZ, Zhao BH, Yang SL (2000) Studies on the chemical constituents of hairystalk loosestrife (Lysimachia capillipes). Chin Tradit Herb Drugs 31:81–83Google Scholar
  28. Xu CM, Ren H, Qian DW, Sun G, Su SL, Guo S, Ouyang Z, Duan JA (2015) Determine resource chemical component in ginkgo pollen simultaneously by UPLC-TQ-MS. J Chin Mater Med 40:2157–2162Google Scholar
  29. Yadav TC, Kumar N, Raj U, Goel N, Vardawaj PK, Prasad R, Pruthi V (2019) Exploration of interaction mechanism of tyrosol as a potent anti-inflammatory agent. J Biomol Struct Dyn 19:1–16CrossRefGoogle Scholar
  30. Yan J, Yan YM, Wei YF, Sun J, Long F (2017) Chemical constituents of acrial part of Bupleunum malconense. Chin Tradit Herb Drugs 48:1282–1285Google Scholar
  31. Yoon WJ, Ham YM, Kim SS, Yoo BS, Moon JY, Baik JS, Lee NH, Hyun CG (2009) Suppression of pro-inflammatory cytokines, iNOS, and COX-2 expression by brown algae Sargassum micracanthum in RAW 264.7 macrophages. Eurasia J Biosci 3:130–143CrossRefGoogle Scholar
  32. Yoshitama K, Kawasoe T, Ishikura N (1993) Isolation of a new flavonol glycoside and its effects on the blue color of seed coats of Ophiopogon jaburan. J Plant Res 106:223–227CrossRefGoogle Scholar
  33. Youshikawa T, Naito Y, Kondo M (1999) Ginkgo Biloba leaf extract–review of biological actions. Antioxid Redox Signal 4:469–480CrossRefGoogle Scholar
  34. Yuda M, Ohtani K, Mizutani K, Kasai R, Tanaka O, Jia MR, Ling YR, Put XF, Saruwatari YI (1990) Neolignan gglycosides from roots of Codonopsis tangshen. Phytochemistry 29:1989–1993CrossRefGoogle Scholar
  35. Zhang XS, Liu ZT, Bi XL, Liu JX, Li W, Zhao YQ (2013) Flavonoids and its derivatives from Callistephus chinensis flowers and their inhibitory activities against Α-glucosidase. EXCLI J 12:956–966PubMedGoogle Scholar
  36. Zhou G, Yao X, Tang Y, Yang N, Pang H, Mo X, Zhu S, Su S, Qian D, Jin C, Qin Y, Duan JA (2012) Two new nonacosanetriols from Ginkgo biloba sarcotesta. Chem Phys Lipids 165:731–736CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Institute of Radiation MedicineBeijingPeople’s Republic of China

Personalised recommendations