Medicinal Chemistry Research

, Volume 28, Issue 9, pp 1339–1358 | Cite as

Advance in biological activities of natural guaiane-type sesquiterpenes

  • Gang-Hua Ma
  • Kai-Xian Chen
  • Liu-Qiang ZhangEmail author
  • Yi-Ming LiEmail author
Review Article


Belonging to the terpenes family, sesquiterpenes represent a group of natural compounds with diverse skeletal types. Given their unique structural features and various functional groups, these compounds possess numerous biological activities and have received increasing interest in recent years. Guaiane-type sesquiterpenes are a special category of sesquiterpenes with various biological activities, such as antitumor, anti-inflammatory, and antibacterial. Mipsagargin, a prodrug of thapsigargin, could be used in the treatment of glioblastoma multiforme and hepatocellular carcinoma, and has completed the phase II clinical trials. Guaiane-type sesquiterpenes are not only abundant but also diverse, widely distributed, and complex, and have variable structures. To our knowledge, there is no review of guaiane-type sesquiterpenes in extant literature. This review summarizes the distribution of guaiane-type sesquiterpenes in plants, the possible biogenic pathways and chemical structures as well as the research progress on their biological activities from 1990 to 2018. Guaiane-type sesquiterpenes are present in approximately 70 genera of 30 plant families (e.g., Asteraceae, Lamiaceae, Thymelaeaceae, and Zingiberaceae); they can be classified into 12,6-guaianolides, 12,8-guaianolides, pseudoguaianolides, tricycle guaiane-type sesquiterpenes, dimers or trimers containing guaiane-type sesquiterpenes mother nuclei, variant guaiane-type sesquiterpenes, and other guaiane-type sesquiterpenes. Among them, 12,8-guaianolides exerted the broadest biological activity.


Guaiane-type sesquiterpenes Asteraceae Guaianolides Anti-inflammation Antitumor 



This research was supported by the Drug Innovation Major Project (2018ZX09711-001), the National Natural Science Foundation of China (81673570), the Excellent Academic Leaders Program of Shanghai (16XD1403500), the Shanghai Science and Technology Innovation action plan (18401931100), and the program of Shanghai E-Research Institute of Bioactive Constituents in Traditional Chinese Medicine.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adekenov SM (2017) Sesquiterpene lactones with unusual structure. Their biogenesis and biological activity. Fitoterapia 121:16–30Google Scholar
  2. Ahmed AA, EIa MA, Adams AAD, Mabry TJ (1996) Sesquiterpenes from Lepechinia urbaniana. Planta Med 60:385–386Google Scholar
  3. Amoah SKS, Vecchia MTD, Pedrini B, Carnhelutti GL, Goncalves AE, Santos DAD, Biavatti MW, Souza MMD (2015) Inhibitory effect of sesquiterpene lactones and the sesquiterpene alcohol aromadendrane-4β,10α-diol on memory impairment in a mouse model of Alzheimer. Eur J Pharmacol 769:195–202Google Scholar
  4. An J, Hao D, Zhang Q, Chen B, Zhang R, Wang Y, Yang H (2016) Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption. Int Immunopharmacol 36:118–131Google Scholar
  5. Andersen TB, Lopez CQ, Manczak T, Martinez K, Simonsen HT (2015) Thapsigargin–from Thapsia L. To mipsagargin. Molecules 20:6113–6127Google Scholar
  6. Ao WLJ, Wang QH, Si Q, Mu D, Sa RTY, Dai NYT, Du RSHLT (2012) The structural elucidation and antimicrobial activities of two new sesquiterpenes from Syringa pinnatifolia Hemsl. Chin J Nat Med 10:477–480Google Scholar
  7. Asadi-Samani M, Kafash-Farkhad N, Azimi N, Fasihi A, Alinia-Ahandani E, Rafieian-Kopaei M (2015) Medicinal plants with hepatoprotective activity in Iranian folk medicine. Asian Pac J Trop Biomed 5:146–157Google Scholar
  8. Asakawa Y, Ludwiczuk A, Nagashima F (2013) Phytochemical and biological studies of bryophytes. Phytochemistry 91:52–80Google Scholar
  9. Azietaku JT, Ma H, Yu XA, Li J, Oppong MB, Cao J, An M, Chang YX (2017) A review of the ethnopharmacology, phytochemistry and pharmacology of Notopterygium incisum. J Ethnopharmacol 202:241–255Google Scholar
  10. Balaji S, Chempakam B (2010) Toxicity prediction of compounds from turmeric (Curcuma longa L). Food Chem Toxicol 48:2951–2959Google Scholar
  11. Barquera-Lozada JE, Cuevas G (2009) Biogenesis of sesquiterpene lactones pseudoguaianolides from germacranolides: theoretical study on the reaction mechanism of terminal biogenesis of 8-epiconfertin. J Org Chem 74:874–833Google Scholar
  12. Bitam F, Ciavatta ML, Manzo E, Dibi A, Gavagnin M (2008) Chemical characterisation of the terpenoid constituents of the Algerian plant Launaea arborescens. Phytochemistry 69:2984–2992Google Scholar
  13. Brennen WN, Rosen DM, Wang H, Isaacs JT, Denmeade SR (2012) Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J Natl Cancer Inst 104:1320–1334Google Scholar
  14. Bruno M, Bancheva S, Rosselli S, Maggio A (2013) Sesquiterpenoids in subtribe Centaureinae (Cass.) Dumort (tribe Cardueae, Asteraceae): distribution, 13C NMR spectral data and biological properties. Phytochemistry 95:19–93Google Scholar
  15. Chakraborty K, Lipton AP, Paulraj R, Chakraborty RD (2010) Guaiane sesquiterpenes from seaweed Ulva fasciata Delile and their antibacterial properties. Eur J Med Chem 45:2237–2244Google Scholar
  16. Chen G, Wang Y, Li M, Xu T, Wang X, Hong B, Niu Y (2014a) Curcumol induces HSC-T6 cell death through suppression of Bcl-2: Involvement of PI3K and NF-κB pathways. Eur J Pharm Sci 65:21–28Google Scholar
  17. Chen QF, Liu ZP, Wang FP (2011) Natural sesquiterpenoids as cytotoxic anticancer agents. Mini-Rev Med Chem 11:1153–1164Google Scholar
  18. Chen X, Zong C, Gao Y, Cai R, Fang L, Lu J, Liu F, Qi Y(2014b) Curcumol exhibits anti-inflammatory properties by interfering with the JNK-mediated AP-1 pathway in lipopolysaccharide-activated RAW264.7 cells Eur J Pharmacol 723:339–345Google Scholar
  19. Chen YJ, Jiang HX, Gao K (2013) One novel nortriterpene and other constituents from Eupatorium fortunei Turcz. Biochem Syst Ecol 47:1–4Google Scholar
  20. Cheng X, Zeng Q, Ren J, Qin J, Zhang S, Shen Y, Zhu J, Zhang F, Chang R, Zhu Y, Zhang W, Jin H (2011) Sesquiterpene lactones from Inula falconeri, a plant endemic to the Himalayas, as potential anti-inflammatory agents. Eur J Med Chem 46:5408–5415Google Scholar
  21. Cheng XR, Ye J, Ren J, Zeng Q, Zhang F, Qin JJ, Shen YH, Zhang WD, Jin HZ (2012) Terpenoids from Inula sericophylla Franch. and their chemotaxonomic significance. Biochem Syst Ecol 42:75–78Google Scholar
  22. Chi J, Li BC, Dai WF, Liu L, Zhang M (2016) Highly oxidized sesquiterpenes from Artemisia austro-yunnanensis. Fitoterapia 115:182–188Google Scholar
  23. Cho W, Nam JW, Kang HJ, Windono T, Seo EK, Lee KT (2009) Zedoarondiol isolated from the rhizoma of Curcuma heyneana is involved in the inhibition of iNOS, COX-2 and pro-inflammatory cytokines via the downregulation of NF-κB pathway in LPS-stimulated murine macrophages. Int Immunopharmacol 9:1049–1057Google Scholar
  24. Deng Yh, Scott L, Swanson D, Snyder JK, Sarib N, Dogan H (2001) Guaianolide sesquiterpene lactones from Cichorium intybus (Asteraceae). Z. Naturforsch. B 56:787–796Google Scholar
  25. Denmeade SR, Mhaka AM, Rosen DM, Brennen WN, Dalrymple S, Dach I, Olesen C, Gurel B, Demarzo AM, Wilding G, Carducci MA, Dionne CA, Moller JV, Nissen P, Christensen SB, Isaacs JT (2012) Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Sci Transl Med 4:140–186Google Scholar
  26. Dong JY, Ma XY, Cai XQ, Yan PC, Yue L, Lin C, Shao WW (2013) Sesquiterpenoids from Curcuma wenyujin with anti-influenza viral activities. Phytochemistry 85:122–128Google Scholar
  27. Du YM, Chen RZ, Hu BR (1998) Advances in studies on chemical constituents and pharmacological activities of Patchouli. Chin J New Drugs Clin Remed 9:238–241Google Scholar
  28. Endale M, Lee WM, Kwak YS, Kim NM, Kim BK, Kim SH, Cho J, Kim S, Park SC, Yun BS, Ko D, Rhee M (2013) Torilin ameliorates type II collagen-induced arthritis in mouse model of rheumatoid arthritis. Int Immunopharmacol 16:232–242Google Scholar
  29. Feng YL, Chen H, Tian T, Chen DQ, Zhao YY, Lin RC (2014) Diuretic and anti-diuretic activities of the ethanol and aqueous extracts of Alismatis rhizoma. J Ethnopharmacol 154:386–390Google Scholar
  30. Fischer NH (1990) Sesquiterpene lactones: Biogenesis and biomimetic transformations. In: Towers GHN, Stafford HA (eds) Biochemistry of the mevalonic acid pathway to terpenoids. Plenum Press, New York, NY, p 161–192Google Scholar
  31. Fleischer TC, Waigh RD, Waterman PG (1997) Pogostol o-methyl ether and artabotrol: two novel sesquiterpenes from the stem bark of Artabotrys stenopetalus. J Nat Prod 60:1054–1056Google Scholar
  32. Formisano C, Sirignano C, Rigano D, Chianese G, Zengin G, Seo EJ, Efferth T, Taglialatela-Scafati O (2017) Antiproliferative activity against leukemia cells of sesquiterpene lactones from the Turkish endemic plant Centaurea drabifolia subsp. detonsa. Fitoterapia 120:98–102Google Scholar
  33. Fraga BM (1999) Natural sesquiterpenoids. Nat Prod Rep 16:21–38Google Scholar
  34. Fu HW, Zhang L, Yi T, Feng YL, Tian JK (2010a) Guaiane type sesquiterpenes and other constituents from Daucus carota L. Biochem Syst Ecol 38:309–312Google Scholar
  35. Fu HW, Zhang L, Yi T, Feng YL, Tian JK (2010b) Two new guaiane-type sesquiterpenoids from the fruits of Daucus carota L. Fitoterapia 81:443–446Google Scholar
  36. Fukuyam Y, Minam H, Ichikaw RN, Takeuch KK, Kodam M (1996) Hydroperoxylated guaiane-type sesquiterpenes from Viburnum awabuki. Phytochemistry 42:741–746Google Scholar
  37. Gallardo AB, Cueto M, Diaz-Marrero AR, Cuadra P, Fajardo V, Darias J (2011) The recurvatianes: a suite of oxygenated guaiane sesquiterpenes from Perezia recurvata. Phytochemistry 72:284–289Google Scholar
  38. Gao K, Jia ZJ (1999) Two new sesquiterpenes from Ligularia duciformis. Chem Res Chin Univ 15:70–72Google Scholar
  39. Guan L, Quan LH, Cong PZ (1992) Studies on the chemical constituents of volatile oil from Pogostemon cablin (Blanco) Benth. Nat Prod Res Dev 4:34–37Google Scholar
  40. Guarrera PM, Savo V (2016) Wild food plants used in traditional vegetable mixtures in Italy. J Ethnopharmacol 185:202–234Google Scholar
  41. Gutierrez-Rodriguez AG, Juarez-Portilla C, Olivares-Banuelos T, Zepeda RC (2018) Anticancer activity of seaweeds. Drug Discov Today 23:434–447Google Scholar
  42. Han YF, Cao GX, Gao XJ, Xia M (2010) Isolation and characterisation of the sesquiterpene lactones from Lactuca sativa L var. anagustata. Food Chem 120:1083–1088Google Scholar
  43. Hao X, Zhang J, Zhan G, Xue Y, Luo Z, Yao G, Zhang Y (2013) Chemical constituents from Teucrium viscidum. Biochem Syst Ecol 51:78–82Google Scholar
  44. Hashim YZHY, Kerr PG, Abbas P, Salleh HM (2016) Aquilaria spp. (agarwood) as source of health beneficial compounds: a review of traditional use, phytochemistry and pharmacology. J Ethnopharmacol 189:331–360Google Scholar
  45. Hnawia E, Menut C, Agrebi A, Cabalion P (2008) Wood essential oils of two endemic trees from New Caledonia: Callitris sulcata (Parl.) Schltr. and Callitris neocaledonica Dummer. Biochem Syst Ecol 36:859–866Google Scholar
  46. Hou CJ, Kulka M, Zhang JZ, Li YM, Guo FJ (2014) Occurrence and biological activities of eremophilane-type sesquiterpenes. Mini-Rev Med Chem 14:664–677Google Scholar
  47. Huang SZ, Ma QY, Kong FD, Guo ZK, Wang Q, Dai HF, Liu YQ, Zhou J, Zhao YX (2017) Daphnauranins A and B, two new antifeedants Isolated from Daphne aurantiaca roots. Fitoterapia 122:11–15Google Scholar
  48. Iranshahi M, Hosseini ST, Shahverdi AR, Molazade K, Khan SS, Ahmad VU (2008) Diversolides A-G, guaianolides from the roots of Ferula diversivittata. Phytochemistry 69:2753–2757Google Scholar
  49. Ishihara M, Tsuneya T, Uneyama K (1991) Guaiane sesquiterpenes from agarwood. Phytochemistry 30:3343–3347Google Scholar
  50. Ishihara M, Tsuneya T, Uneyama K (1993) Components of the volatile concentrate of agarwood. J Essent Oil Res 5:283–289Google Scholar
  51. Jakobsen CM, Denmeade SR, Isaacs JT, Gady A, Olsen CE, Christensen SB (2001) Design, synthesis, and pharmacological evaluation of thapsigargin analogues for targeting apoptosis to prostatic cancer cells. J Med Chem 44:4696–4703Google Scholar
  52. Jia ZJ, Li Y, Shi JG, Wang QG (1991) The structures of a guaianolide and its glucoside. Acta Chim Sinica 49:1136–1141Google Scholar
  53. Joel DM, Chaudhuri SK, Plakhine D, Ziadna H, Steffens JC (2011) Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 72:624–634Google Scholar
  54. Kamauchi H, Kinoshita K, Takatori K, Sugita T, Takahashi K, Koyama K (2015) New sesquiterpenoids isolated from Atractylodes lancea fermented by marine fungus. Tetrahedron 71:1909–1914Google Scholar
  55. Kim YC, Lee MK, Sung SH, Kim SH (2007) Sesquiterpenes from Ulmus davidiana var. japonica with the inhibitory effects on lipopolysaccharide-induced nitric oxide production. Fitoterapia 78:196–199Google Scholar
  56. Kisiel W, Barszcz B (2000) Further sesquiterpenoids and phenolics from Taraxacum officinale. Fitoterapia 71:269–273Google Scholar
  57. Kitajima J, Suzuki N, Tanaka Y (1998) New guaiane-type sesquiterpenoid glycosides from Torillis japonica fruit. Chem Pharm Bull 46:1743–1747Google Scholar
  58. Labbb C, Faini F, Coll J, Carbonell P (1998) Guaiane sesquiterpenoids from Haplopappus foliosus. Phytochemistry 49:793–795Google Scholar
  59. Lemmich E, Smitt UW, Jensen JS, Christensen SB (1991) Guaiane esters from Thapsza vzllosa. Phytochemistry 30:2987–2990Google Scholar
  60. Li D, Wang KW (2016) Natural new sesquiterpenes: Structural diversity and bioactivity. Curr Org Chem 20:994–1042Google Scholar
  61. Li F, Li CJ, Ma J, Yang JZ, Chen H, Liu XM, Li Y, Zhang DM (2013a) Four new sesquiterpenes from the stems of Pogostemon cablin. Fitoterapia 86:183–187Google Scholar
  62. Li R, Xiang C, Zhang X, Guo DA, Ye M (2010) Chemical analysis of the Chinese herbal medicine turmeric (Curcuma longa L.). Curr Pharm Anal 6:256–268Google Scholar
  63. Li RJ, Guo DX, Lou HX (2013b) A new guaiane-type sesquiterpene lactone from the Chinese liverwort Porella acutifolia subsp. tosana. Chin J Nat Med 11:74–76Google Scholar
  64. Liu HY, Ran XH, Gong NB, Ni W, Qin XJ, Hou YY, Lu Y, Chen CX (2013) Sesquiterpenoids from Chloranthus multistachys. Phytochemistry 88:112–118Google Scholar
  65. Liu JL, Li XH, Peng C, Lin DS, Wang YN, Yang YT, Zhou QM, Xiong L (2015) 4-nor-β-Patchoulene sesquiterpenoids from the essential oil of Pogostemon cablin. Phytochem Lett 12:27–30Google Scholar
  66. Liu LP, Han K, Chen W, Zhang YY, Tong LJ, Peng T, Xie H, Ding J, Wang HB (2014a) Topoisomerase II inhibitors from the roots of Stellera chamaejasme L. Bioorg Med Chem 22:4198–4203Google Scholar
  67. Liu S, Liu SB, Zuo WJ, Guo ZK, Mei WL, Dai HF (2014b) New sesquiterpenoids from Aglaia odorata var. microphyllina and their cytotoxic activity. Fitoterapia 92:93–99Google Scholar
  68. Lone SH, Bhat KA, Khuroo MA (2015) Arglabin: From isolation to antitumor evaluation. Chem Biol Interact 240:180–198Google Scholar
  69. Lu JJ, Dang YY, Huang M, Xu WS, Chen XP, Wang YT (2012) Anti-cancer properties of terpenoids isolated from rhizoma Curcumae – a review. J Ethnopharmacol 143:406–411Google Scholar
  70. Luo JP, Feng YF, Guo XL, Li XQ (1999) GC-MS analysis of volatile oil of herba Pogostemon cablin collected gaoyao county. Chin Med Mat 22:25–28Google Scholar
  71. Ma CM, Nakamura N, Hattori M, Zhu S, Komatsu K (2000) Guaiane dimers and germacranolide from Artemisia caruifolia. J Nat Prod 63:1626–1629Google Scholar
  72. Maktins D, Osshiro E, Roque NF, Marks V, Gottlieb HE (1998) A sesquiterpene dimer from Xylopia aromatzca. Phytochemistry 48:677–680Google Scholar
  73. Marco JA, Sanz JF, Albiach R (1992) A sesquiterpene ester from Lactuca serrzola. Phytochemistry 31:2539–2540Google Scholar
  74. Masullo M, Montoro P, Mari A, Pizza C, Piacente S (2015) Medicinal plants in the treatment of women’s disorders: Analytical strategies to assure quality, safety and efficacy. J Pharm Biomed Anal 113:189–211Google Scholar
  75. Matsuda H, Kageura T, Toguchida I, Murakami T, Kishi A, Yoshikawa M (1999) Effects of sesquiterpenes and triterpenes from the rhizome of Alisma orientale on nitric oxide production in lipopolysaccharide-activated macrophages: absolute stereostructures of alismaketones-B 23-acetate and -C 23-acetate. Bioorg Med Chem Lett 9:3081–3086Google Scholar
  76. Mendes SA, Mansoor TA, Rodrigues A, Armas JB, Ferreira MJ (2013) Anti-inflammatory guaiane-type sesquiterpenes from the fruits of Pittosporum undulatum. Phytochemistry 95:308–314Google Scholar
  77. Mohammadhosseini M, Sarker SD, Akbarzadeh A (2017) Chemical composition of the essential oils and extracts of Achillea species and their biological activities: a review. J Ethnopharmacol 199:257–315Google Scholar
  78. Mu W, Tang H, Li Y, He D, Ma R, Wang L (2016) Caesalpinone A, a new type of gorgonane sesquiterpenoid containing an unprecedented 1,15-bridge, from the pods of Caesalpinia spinosa Kuntze. Fitoterapia 112:233–236Google Scholar
  79. Nakamura MJ, Monteiro SS, Bizarri CHB, Siani AC, Ramos MFS (2010) Essential oils of four Myrtaceae species from the Brazilian southeast. Biochem Syst Ecol 38:1170–1175Google Scholar
  80. Pacifico S, Gallicchio M, Lorenz P, Potenza N, Galasso S, Marciano S, Fiorentino A, Stintzing FC, Monaco P (2013) Apolar Laurus nobilis leaf extracts induce cytotoxicity and apoptosis towards three nervous system cell lines. Food Chem Toxicol 62:628–637Google Scholar
  81. Pantoja Pulido KD, Colmenares Dulcey AJ, Isaza Martinez JH (2017) New caffeic acid derivative from Tithonia diversifolia (Hemsl.) A. Gray butanolic extract and its antioxidant activity. Food Chem Toxicol 109:1079–1085Google Scholar
  82. Peng LY, Xu G, He J, Wu XD, Dong LB, Gao X, Cheng X, Su J, Li Y, Dong WM, Zhao QS (2015) Nor-lupane triterpenoid and guaiane sesquiterpenoids from Schefflera venulosa. Fitoterapia 103:294–298Google Scholar
  83. Phan CS, Kamada T, Ishii T, Hamada T, Vairappan CS (2018) A new guaiane-type sesquiterpenoid from a bornean soft coral, Xenia stellifera. Nat Prod Commun 13:15–16Google Scholar
  84. Phan MG, Tran TTN, Phan TS, Otsuka H, Matsunami K (2012) Two new sesquiterpene lactones and other chemical constituents of Artemisia roxbughiana. Biochem Syst Ecol 45:115–119Google Scholar
  85. Qin J, Wang W, Zhang R (2017) Novel natural product therapeutics targeting both inflammation and cancer. Chin J Nat Med 15:401–416Google Scholar
  86. Qin JJ, Jin HZ, Huang Y, Zhang SD, Shan L, Voruganti S, Nag S, Wang W, Zhang WD, Zhang R (2013) Selective cytotoxicity, inhibition of cell cycle progression, and induction of apoptosis in human breast cancer cells by sesquiterpenoids from Inula lineariifolia Turcz. Eur J Med Chem 68:473–481Google Scholar
  87. Raharivelomanan P, Blanchin JP, Faure R, Cambon A, Azzaro M (1996) Two guaiane and eudesmane-type sesquiterpenoids from Neocallitropsis pancheri. Phytochemistry 41:243–246Google Scholar
  88. Rakotonirainy O, Gaydou EM, Faure R, Bombarda I (1997) Sesquiterpenes from Patchouli (Pogostemon cablin) essential oil. Assignment of the proton and carbon-13 nmr spectra. J Essent Oil Res 9:321–327Google Scholar
  89. Ren Y, Zhou Y, Chen X, Ye Y (2005) Discovery, structural determination and anticancer activities of lactucinlike guaianolides. Lett Drug Design Discov 2:444–450Google Scholar
  90. Rukachaisiriku V, Naovani SA, Taylor WC, Bubb WA, Dampawan P (1998) A sesquiterpene from Gardenia sootepensis. Phytochemistry 48:197–200Google Scholar
  91. Safarova AG, Serkerov SV (1997) Sesquiterpene lactones of Artemisia absinthium. Chem Nat Compd 33:653–654Google Scholar
  92. Saito Y, Taniguchi M, Komiyama T, Ohsaki A, Okamoto Y, Gong X, Kuroda C, Tori M (2013) Four new compounds from Ligularia virgaurea: isolation of eremophilane and noreremophilane sesquiterpenoids and the absolute configuration of 2α-hydroxyeremophil-11-en-9-one by CD spectrum and DFT calculation. Tetrahedron 69:8505–8510Google Scholar
  93. Saleh-E-In MM, Staden JV (2018) Ethnobotany, phytochemistry and pharmacology of Arctotis arctotoides (L.f.) O. Hoffm.: a review. J Ethnopharmacol 220:294–320Google Scholar
  94. Sarkhail P (2014) Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: a review. J Ethnopharmacol 156:235–270Google Scholar
  95. Shao H, Mei WL, Kong FD, Dong WH, Gai CJ, Li W, Zhu GP, Dai HF (2016) Sesquiterpenes of agarwood from Gyrinops salicifolia. Fitoterapia 113:182–187Google Scholar
  96. Shen T, Li GH, Wang XN, Lou HX (2012) The genus Commiphora: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 142:319–330Google Scholar
  97. Simonsen HT, Weitzel C, Christensen SB (2013) Guaianolide sesquiterpenoids: pharmacology and biosynthesis. J Nat Prod 98:3069–3098Google Scholar
  98. Singh P, Suri A (1990) Guaiane ester from Moscharia pinnatifida. Phytochemistry 29:3944–3945Google Scholar
  99. Sousa EAD, Silva AADCAD, Roque NF, Júnior GMV, Lago JHG, Chaves MH (2014) Terpenes and steroids from leaves of Oxandra sessiliflora R. E. Fries. Phytochem Lett 8:193–195Google Scholar
  100. Stojakowska A, Malarz J, Kisiel W (1994) Sesquiterpene lactones in tissue culture of Lactuca virosa. Planta Med 60:93–94Google Scholar
  101. Suphrom N, Pumthong G, Khorana N, Waranuch N, Limpeanchob N, Ingkaninan K (2012) Anti-androgenic effect of sesquiterpenes isolated from the rhizomes of Curcuma aeruginosa Roxb. Fitoterapia 83:864–871Google Scholar
  102. Swamy MK, Sinniah UR (2015) A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance. Molecules 20:8521–8547Google Scholar
  103. Takaya Y, Kurumada KI, Takeujr Y, Kim HS, Shibata Y, Ikemoto N, Wataya Y, Oshima Y (1998) Novel antimalarial guaiane-type sesquiterpenoids from Nurdostuchys chinensis roots. Tetrahedron Lett 39:1361–1364Google Scholar
  104. Takaya Y, Takeuji Y, Megumi A, Nakagawasai O, Tadano T, Kisara K, Kim HS, Wataya Y, Niwa M, Oshima Y (2000) Novel guaiane endoperoxides, nardoguaianone A-D, from Nardostachys chinensis roots and their antinociceptive and antimalarial activities. Tetrahedron 56:7673–7678Google Scholar
  105. Takeuchi N, Fujita T, Goto K, Morisaki N, Osone N, Tobinaga S (1993) Dictamnol, a new trinor-guaiane type sesquiterpene, from the roots of Dictamnus dasycarpus Turcz. Chem Pharm Bull 41:923–925Google Scholar
  106. Tian T, Chen H, Zhao YY (2014) Traditional uses, phytochemistry, pharmacology, toxicology and quality control of Alisma orientale (Sam.) Juzep: a review. J Ethnopharmacol 158:373–387Google Scholar
  107. Todorova M, Trendafilova A, Danova K, Simmons L, Wolfram E, Meier B, Riedl R, Evstatieva L (2015) Highly oxygenated sesquiterpenes in Artemisia alba Turra. Phytochemistry 110:140–149Google Scholar
  108. Tori M, Nakashima K, Takeda T, Kan Y, Takaoka S, Asakawa Y (1996) Novel sesquiterpenoids from the colombian liverwort Porella swartziana. Tetrahedron 52:6339–6354Google Scholar
  109. Triana J, Eiroa JL, Morales M, Perez FJ, Brouard I, Marrero MT, Estevez S, Quintana J, Estevez F, Castillo QA, Leon F (2013) A chemotaxonomic study of endemic species of genus Tanacetum from the Canary Islands. Phytochemistry 92:87–104Google Scholar
  110. Wang HB, Zuo JP, Qin GW (2010a) One new sesquiterpene from Saussurea laniceps. Fitoterapia 81:937–939Google Scholar
  111. Wang HX, Liu CM, Liu Q, Gao K (2008) Three types of sesquiterpenes from rhizomes of Atractylodes lancea. Phytochemistry 69:2088–2094Google Scholar
  112. Wang J, Li XM, Bai Z, Chi BX, Wei Y, Chen X (2018a) Curcumol induces cell cycle arrest in colon cancer cells via reactive oxygen species and Akt/ GSK3β/cyclin D1 pathway. J Ethnopharmacol 210:1–9Google Scholar
  113. Wang L, Qin W, Tian L, Zhang XX, Lin F, Cheng F, Chen JF, Liu CX, Guo ZY, Proksch P, Zou K (2018b) Caroguaianolide A-E, five new cytotoxic sesquiterpene lactones from Carpesium abrotanoides L. Fitoterapia 127:349–355Google Scholar
  114. Wang XX, Gao X, Jia ZJ (2010b) Sesquiterpenoids from Lactuca tatarica. Fitoterapia 81:42–44Google Scholar
  115. Wang YS, Wen ZQ, Li BT, Zhang HB, Yang JH (2016) Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: an update. J Ethnopharmacol 181:66–107Google Scholar
  116. Warashin T, Ishino M, Miyase T, Ueno A (1990) Sesquiterpene glycosides from Ixeris debilis and Ixeris repens. Phytochemistry 29:3217–3224Google Scholar
  117. Wu QX, He XF, Jiang CX, Zhang W, Shi ZN, Li HF, Zhu Y (2018) Two novel bioactive sulfated guaiane sesquiterpenoid salt alkaloids from the aerial parts of Scorzonera divaricata. Fitoterapia 124:113–119Google Scholar
  118. Wu XD, Ding LF, Tu WC, Yang H, Su J, Peng LY, Li Y, Zhao QS (2016) Bioactive sesquiterpenoids from the flowers of Inula japonica. Phytochemistry 129:68–76Google Scholar
  119. Xia G, Zhou L, Ma J, Wang Y, Ding L, Zhao F, Chen L, Qiu F (2015) Sesquiterpenes from the essential oil of Curcuma wenyujin and their inhibitory effects on nitric oxide production. Fitoterapia 103:143–148Google Scholar
  120. Xiang FF, He JW, Liu ZX, Peng QZ, Wei H (2018) Two new guaiane-type sesquiterpenes from Curcuma kwangsiensis and their inhibitory activity of nitric oxide production in lipopolysaccharide-stimulated macrophages. Nat Prod Res 32:2670–2675Google Scholar
  121. Xiao W, Li X, Li N, Bolati M, Wang X, Jia X, Zhao Y (2011) Sesquiterpene lactones from Saussurea involucrata. Fitoterapia 82:983–987Google Scholar
  122. Xie YG, Guo YG, Wu GJ, Zhu SL, Cheng TF, Zhang Y, Yan SK, Jin HZ, Zhang WD (2018a) Xylopsides A-D, four rare guaiane dimers with two unique bridged pentacyclic skeletons from Xylopia vielana. Org Biomol Chem 16:8408–8412Google Scholar
  123. Xie YG, Wu GJ, Cheng TF, Zhu SL, Yan SK, Jin HZ, Zhang WD (2018b) Vielopsides A-E, five new guaiane-type sesquiterpenoid dimers from Xylopia vielana. Fitoterapia 130:43–47Google Scholar
  124. Xie YG, Zhang WY, Zhu SL, Cheng TF, Wu GJ, Muhammad I, Yan SK, Zhang Y, Jin HZ, Zhang WD (2018c) Xyloplains A–F, six new guaiane-type sesquiterpenoid dimers from Xylopia vielana. RSC Adv 8:25719–25724Google Scholar
  125. Xu HB, Ma YB, Huang XY, Geng CA, Wang H, Zhao Y, Yang TH, Chen XL, Yang CY, Zhang XM, Chen JJ (2015) Bioactivity-guided isolation of anti-hepatitis B virus active sesquiterpenoids from the traditional Chinese medicine: rhizomes of Cyperus rotundus. J Ethnopharmacol 171:131–140Google Scholar
  126. Xu J, Guo Y, Zhao P, Guo P, Ma Y, Xie C, Jin DQ, Gui L (2012a) Four new sesquiterpenes from Commiphora myrrha and their neuroprotective effects. Fitoterapia 83:801–805Google Scholar
  127. Xu JJ, Huang HQ, Zeng GZ, Tan NH (2012b) Cytotoxic sesquiterpenes and lignans from Saussurea deltoidea. Fitoterapia 83:1125–1130Google Scholar
  128. Xue L, Li PL, Liang Z, Tang XL, Li GQ (2014) Sesquiterpenoids and steroids from gorgonian Echinogorgia sassapo reticulate. Biochem Syst Ecol 57:48–51Google Scholar
  129. Yang D, Wang J, Li W, Dong W, Mei W, Dai H (2016a) New guaiane and acorane sesquiterpenes in high quality agarwood “Qi-Nan” from Aquilaria sinensis. Phytochem Lett 17:94–99Google Scholar
  130. Yang DL, Li W, Dong WH, Wang J, Mei WL, Dai HF (2016b) Five new 5,11-epoxyguaiane sesquiterpenes in agarwood “Qi-Nan” from Aquilaria sinensis. Fitoterapia 112:191–196Google Scholar
  131. Yang DP, Zhang XL (1999) Studies on volatile constituents from Scutellaria baicalensis Georgi. Chin J New Drugs Clin Remed 10:234–236Google Scholar
  132. Yang JL, Shi YP (2012) Cycloartane-type triterpenoids and sesquiterpenoids from the resinous exudates of Commiphora opobalsamum. Phytochemistry 76:124–132Google Scholar
  133. Yang M, Zhang J, Li Y, Han X, Gao K, Fang J (2016c) Bioassay-guided isolation of dehydrocostus lactone from Saussurea lappa: A new targeted cytosolic thioredoxin reductase anticancer agent. Arch Biochem Biophys 607:20–26Google Scholar
  134. Yang PP, Zhu WF, Xu J, Liu WY, Dong ZH, Takashi K, Takeshi Y, Xie N, Feng F, Zhang J (2018) Sesquiterpenoids and triterpenoids from Secamone lanceolata Blume with inhibitory effects on nitric oxide production. Fitoterapia 133:5–11Google Scholar
  135. Yang YJ, Yao J, Jin XJ, Shi ZN, Shen TF, Fang JG, Yao XJ, Zhu Y (2016d) Sesquiterpenoids and tirucallane triterpenoids from the roots of Scorzonera divaricata. Phytochemistry 124:86–98Google Scholar
  136. Yin ZY, Cheng YF, Wei JK, Luo XK, Luo P, Liu SN, Xu J, Chen H, Gu Q (2018) Chemical constituents from Daphne tangutica and their cytotoxicity against nasopharyngeal carcinoma cells. Fitoterapia 130:105–111Google Scholar
  137. Yoshikawa M, Hatakeyama S, Tanaka N, Fukuda Y, Yamahara J, Murakami N (1993) Crude drugs from aquatic plants. I. On the constituents of Alismatis rhizoma. (1). Absolute stereostructures of alisols E 23-acetate, F, and G, three new protostane-type triterpenes from Chinese Alismatis rhizoma. Chem Pharm Bull 41:1948–1954Google Scholar
  138. Youssef DTA (1998) Sesquiterpene lactones of Centaurea scoparia. Phytochemistry 49:1733–1737Google Scholar
  139. Zan K, Chen XQ, Tu PF (2012) A new 1, 10-secoguaianolide from the aerial parts of Artemisia anomala. Chin J Nat Med 10:0358–0362Google Scholar
  140. Zhang C, Liang H, Tu G, Zhao Y (2010) A new natural azulene-type pigment from Oreocnide frutescens. Fitoterapia 81:849–851Google Scholar
  141. Zhang JP, Wang GW, Tian XH, Yang YX, Liu QX, Chen LP, Li HL, Zhang WD (2015) The genus Carpesium: a review of its ethnopharmacology, phytochemistry and pharmacology. J Ethnopharmacol 163:173–191Google Scholar
  142. Zhang P, Qin J, Lü Q (1996) Studies on the chemical constituents of geranium oil. J Guizhou Inst Technol 1:82–85Google Scholar
  143. Zhao G, Cao Z, Zhang W, Zhao H (2015) The sesquiterpenoids and their chemotaxonomic implications in Senecio L. (Asteraceae). Biochem Syst Ecol 59:340–347Google Scholar
  144. Zhou CX, Zhang LS, Chen FF, Wu HS, Mo JX, Gan LS (2017) Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells. Fitoterapia 121:141–145Google Scholar
  145. Zhu H, Zhou QM, Peng C, Chen MH, Li XN, Lin DS, Xiong L (2017) Pocahemiketals A and B, two new hemiketals with unprecedented sesquiterpenoid skeletons from Pogostemon cablin. Fitoterapia 120:67–71Google Scholar
  146. Zhu JX, Qin JJ, Jin HZ, Zhang WD (2013) Japonicones Q-T, four new dimeric sesquiterpene lactones from Inula japonica Thunb. Fitoterapia 84:40–46Google Scholar
  147. Zhu Y, Zhang LX, Zhao Y, Huang GD (2010) Unusual sesquiterpene lactones with a new carbon skeleton and new acetylenes from Ajania przewalskii. Food Chem 118:228–238Google Scholar
  148. Zhuo ZG, Wu GZ, Fang X, Tian XH, Dong HY, Xu XK, Li HL, Xie N, Zhang WD, Shen YH (2017) Chlorajaponols A-F, sesquiterpenoids from Chloranthus japonicus and their in vitro anti-inflammatory and anti-tumor activities. Fitoterapia 119:90–99Google Scholar
  149. Ziaei A, Hoppstadter J, Kiemer AK, Ramezani M, Amirghofran Z, Diesel B (2015) Inhibitory effects of teuclatriol, a sesquiterpene from Salvia mirzayanii, on nuclear factor-κB activation and expression of inflammatory mediators. J Ethnopharmacol 160:94–100Google Scholar
  150. Zidorn C (2008) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry 69:2270–2296Google Scholar
  151. Zou YH, Zhao L, Xu YK, Bao JM, Liu X, Zhang JS, Li W, Ahmed A, Yin S, Tang GH (2018) Anti-inflammatory sesquiterpenoids from the traditional Chinese medicine Salvia plebeia: regulates pro-inflammatory mediators through inhibition of NF-κB and Erk1/2 signaling pathways in LPS-inducedraw264.7 cells. J Ethnopharmacol 210:95–106Google Scholar
  152. Zurich LR (1953) The isoprene rule and the biogenesis of terpenic compounds. Experientia 10:357–396Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
  2. 2.Shanghai Institute of MedicaChinese Academy of SciencesShanghaiChina

Personalised recommendations