Medicinal Chemistry Research

, Volume 28, Issue 5, pp 742–753 | Cite as

Synthesis of new 1-benzyl tetrahydropyridin-4-ylidene piperidinium salts and their antiplasmodial and antitrypanosomal activities

  • Noor-ul-Amin Mohsin
  • Werner SeebacherEmail author
  • Patrick Hochegger
  • Johanna Faist
  • Robert Saf
  • Marcel Kaiser
  • Pascal Mäser
  • Robert Weis
Original Research


Our last study revealed the distinct antiplasmodial and antitrypanosomal activities of 1-benzyl tetrahydropyridin-4-ylidene pyrrolidinium salts. Therefore, we prepared a series of new 1-benzyl tetrahydropyridin-4-ylidene ammonium salts with an alternative amino residue and varying substitution patterns at the benzyl group to investigate the influence of these modifications on the biological activities. All new compounds were characterized by spectroscopic methods like ultraviolet, infrared, nuclear magnetic resonance, as well as high- resolution mass spectra. They were tested for their activities against Plasmodium falciparum and Trypanosoma brucei rhodesiense as well as for their cytotoxicity against L6 cells using microplate assays. The results show that the structure of the amino residue as well as the substitution pattern of the benzyl group influences the biological activities distinctly. Physicochemical parameters are calculated and structure–activity relationships are discussed.


1-benzyl tetrahydropyridin-4-ylidene ammonium salts Antiplasmodial activity Antitrypanosomal activity Structure–activity relationships 


Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

All protocols and procedures used in both in vivo studies were reviewed and approved by the local veterinary authorities of the Canton Basel-Stadt.

Supplementary material

44_2019_2331_MOESM1_ESM.docx (9.2 mb)
Supplementary Information


  1. Agbo EC, Majiwa PAO, Büscher P, Claassen E, te Pas MFW (2003) Trypanosoma brucei genomics and the challenge of identifying drug and vaccine targets. Trends Microbiol 11:322–329CrossRefGoogle Scholar
  2. Ahmed SA, Gogal RM, Walsh JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H] thymidine incorporation assay. J Immunol Methods 170:211–224CrossRefGoogle Scholar
  3. Baltz T, Baltz D, Giroud C, Crockett J (1985) Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J 4:1273–1277CrossRefGoogle Scholar
  4. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD (1979) Quantitative assessment of antimalarial activity in vitro by semiautomated microdilution technique. Antimicrob Agents Chemother 16:710–718CrossRefGoogle Scholar
  5. Franke-Fayard B, Trueman H, Ramesar J, Mendoza J, Van Der Keur M, Van Der Linden R, Sinden RE, Waters AP, Janse CJ (2004) A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol 137:23–33CrossRefGoogle Scholar
  6. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55e68CrossRefGoogle Scholar
  7. Hopkins AL, Keserü GM, Leeson PD, Rees DC, Reynolds CH (2014) The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov 13:105e121CrossRefGoogle Scholar
  8. Huber W, Koella JC (1993) A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop 55:257–261CrossRefGoogle Scholar
  9. Kennedy PGE (2004) Human African trypanosomiasis of the CNS: current issues and challenges. J Clin Invest 113:496–504CrossRefGoogle Scholar
  10. Khabnadideh S, Pez D, Musso A, Brun R, Perez LMR, González- Pacanowska D, Gilbert IH (2005) Design, synthesis and evaluation of 2,4-diaminoquinazolines as inhibitors of trypanosomal and leishmanial dihydrofolate reductase. Bioorg Med Chem 13:2637–2649CrossRefGoogle Scholar
  11. Matile H, Pink JRL (1990) Plasmodium falciparum malaria parasite cultures and their use in immunology. In: Lefkovits I, Pernis B (eds) Immunological Methods. Academic Press, San Diego, p 221–234CrossRefGoogle Scholar
  12. Mohsin N-ul-A, Seebacher W, Faist J, Hochegger P, Kaiser M, Mäser P, Belaj F, Saf R, Kretschmer N, Alajlani M, Turek I, Brantner A, Bauer R, Bucar F, Weis R (2018a) Synthesis of new 1-benzyl tetrahydropyridinylidene ammonium salts and their antimicrobial and anticellular activities. Eur J Med Chem 143:97–106CrossRefGoogle Scholar
  13. Mohsin N-ul-A, Seebacher W, Faist J, Kretschmer N, Bauer R, Saf R, Kaiser M, Mäser P, Weis R (2018b) Modifications on tetrahydropyridin-4-ylidene ammonium salts and their antiprotozoal activities. Monatsh Chem.
  14. Page C, Page M, Noel C (1993) A new fluorimetric assay for cytotoxicity measurements in vitro. J Oncol 3:473–476Google Scholar
  15. Peters W (1987) Chemotherapy and Drug Resistance in Malaria Volume 1. Academic Press Inc, New York, NY, p 147–273Google Scholar
  16. Ponnudurai T, Leeuwenberg AD, Meuwissen JH (1981) Chloroquine sensitivity of isolates of Plasmodium falciparum adapted to in vitro culture. Trop Geogr Med 33:50–54Google Scholar
  17. Puttappa N, Kumar RS, Yamaja K (2017) Artesunate-quercetin/luteolin dual drug nanofacilitated synergistic treatment for malaria: a plausible approach to overcome artemisinin combination therapy resistance. Med Hypotheses 109:176–180CrossRefGoogle Scholar
  18. Räz B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R (1997) The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop 68:139–147CrossRefGoogle Scholar
  19. Seebacher W, Belaj F, Faist J, Saf R, Bucar F, Turek I, Brantner A, Alajlani M, Kaiser M, Mäser P, Weis R (2017) Synthesis of new pyridobenzodiazepine salts and their antimicrobial activities. Mon Chem 148:263–274CrossRefGoogle Scholar
  20. Seebacher W, Faist J, Belaj F, Saf R, Kaiser M, Brun R, Weis R (2015) Synthesis of new tetrahydropyridinylidene ammonium salts and their antiprotozoal potency. Mon Chem 146:1299–1308CrossRefGoogle Scholar
  21. Veber FF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615e2623CrossRefGoogle Scholar
  22. Zigeuner G, Schweiger K (1976) Syntheses of 4-dialkyl-5,6-dihydro-2(1H)-pyridinethiones and 4-alkylamino- or 4-arylamino compounds, resp. Mon Chem 107:1361–1376CrossRefGoogle Scholar
  23. Zufferey R, Pirani K, Cheung-See-Kit M, Lee S, Williams TA, Cheng DG, Hossain MF (2017) The Trypanosoma brucei dihydroxyacetonephosphateacyltransferase TbDAT is dispensable for normal growth but important for synthesis of ether glycerophospholipids. PLoS ONE 12:e0181432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Pharmaceutical sciencesGovernment College UniversityFaisalabadPakistan
  2. 2.Institute of Pharmaceutical Sciences, Pharmaceutical ChemistryUniversity of GrazGrazAustria
  3. 3.Institute for Chemistry and Technology of Organic Materials (ICTM)Graz University of TechnologyGrazAustria
  4. 4.Swiss Tropical and Public Health InstituteBaselSwitzerland
  5. 5.University of BaselBaselSwitzerland

Personalised recommendations