Advertisement

Medicinal Chemistry Research

, Volume 28, Issue 5, pp 681–695 | Cite as

Novel phthalamide derivatives as antihypertensive agents: rapid and clean synthesis, in silico and in vivo evaluation

  • Erik Andrade-Jorge
  • Jessica E. Rodríguez
  • José Bribiesca-Carlos
  • Itzell A. Gallardo-Ortíz
  • José G. Trujillo-FerraraEmail author
  • Rafael Villalobos-MolinaEmail author
Original Research
  • 113 Downloads

Abstract

Hypertension is a prevalent progressive disorder and a key risk factor for cardiovascular disease, stroke, and kidney disease. Angiotensin-I-converting enzyme (ACE) inhibitors are the first-line drugs for treating hypertension, but they have many side effects. ACE is a zinc dipeptidyl carboxypeptidase that cleaves the decapeptide angiotensin-I to form the vasopressor angiotensin-II. Since the latter molecule is the main bioactive product of the renin–angiotensin system, its inhibition is a key strategy for hypertension therapy. The aim of this study was to conduct an in silico evaluation of a series of new phthalamides as ACE inhibitors, examine the acute toxicity (in mice) of three of these molecules, and test the hypertensive effect of the most promising compound in a spontaneous hypertensive rat (SHR) model. The new phthalamide derivatives were synthesized with a fast, cheap, high-yield green (solventless) procedure. Three molecules (DD-01, DD-13, and DD-14S) from the current series of phthalamides were selected as the most promising ACE inhibitors based on in silico analysis of their physicochemical properties, Gibbs free energy and ADME profile. After synthesis, these three molecules showed low toxicity (LD50 > 1600 mg/kg) in the acute toxicity test (Lorke’s method). Finally, DD-01 significantly decreased systolic, diastolic, and mean arterial pressure in the SHR model, being ∼7-fold more potent than captopril (the reference drug). Three novel phthalamide derivatives were synthesized in good yields with a fast and efficient green procedure. They all displayed low toxicity. The one tested in the SHR model proved to be efficient for reducing blood pressure.

Keywords

Hypertension Spontaneously hypertensive rats Green chemistry ADME profile Molecular docking 

Notes

Acknowledgements

EA-J is a postdoctoral fellow from CONACYT. This work was supported by PAPIIT IN223519 (to RV-M), PAPIIT IN226819 (to IAGO) DGAPA from the UNAM, by SIP (m1930 and 20194934) from the Instituto Politécnico Nacional, and by CONACYT-Mexico. We also thank MVZ L. Flores, MD. F. Barrón-Moreno, and Biol. TE Villamar-Duque from FES Iztacala, UNAM, for their aid in animal care and housing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2019_2327_MOESM1_ESM.docx (797 kb)
Supplementary Information.

References

  1. Abdel-Rahman RF, Hessin AF, Abdelbaset M, Ogaly HA, Abd-Elsalam RM, Hassan SM (2017) Antihypertensive effects of Roselle-Olive combination in L-NAME-induced hypertensive rats. Oxid Med Cell Longev 2017:1–24.  https://doi.org/10.1155/2017/9460653 Google Scholar
  2. Alanazi AM, El-Azab AS, Al-Suwaidan Ia, ElTahir KEH, Asiri Ya, Abdel-Aziz NI, Abdel-Aziz Aa-M (2015) Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: anti-inflammatory and analgesic activities. Eur J Med Chem 92:115–123.  https://doi.org/10.1016/j.ejmech.2014.12.039 CrossRefGoogle Scholar
  3. Aliabadi AR, Foroumadi AR, Mohammadi-Farani A, Garmsiri Mahvar M (2013) Synthesis and evaluation of anti-acetylcholinesterase activity of 2-(2-(4-(2-oxo-2-phenylethyl)piperazin-1-yl)ethyl)isoindoline-1,3-dione derivatives with potential anti-Alzheimer effects. Iran J Basic Med Sci 16:1049–1054Google Scholar
  4. Andrade-Jorge E, Sánchez-Labastida LA, Soriano-Ursúa MA, Guevara-Salazar JA, Trujillo-Ferrara JG (2018) Isoindolines/isoindoline-1,3-diones as AChE inhibitors against Alzheimer’s disease, evaluated by an improved ultra-micro assay. Med Chem Res 27:2187–2198.  https://doi.org/10.1007/s00044-018-2226-5 CrossRefGoogle Scholar
  5. Ben Salah B, Hamzaoui S, Krichen F, Saadaoui I, Ben Mansour R, Miled N, Bougatef A, Kossentini M (2018) Design, synthesis of novel triazolones and bis-triazolones derivatives under ultrasound irradiation and evaluation as potent angiotensin converting enzyme (ACE) inhibitors. Bioorg Chem 76:147–153.  https://doi.org/10.1016/j.bioorg.2017.11.004 CrossRefGoogle Scholar
  6. Bloch MJ (2016) Worldwide prevalence of hypertension exceeds 1.3 billion. J Am Soc Hypertens 10:753–754.  https://doi.org/10.1016/j.jash.2016.08.006 CrossRefGoogle Scholar
  7. Campos-nonato I, Hernández-barrera L (2018) Hipertensión arterial en adultos mexicanos: prevalencia, diagnóstico y tipo de tratamiento. Ensanut MC 2016 60:233–243Google Scholar
  8. Cheung IWY, Nakayama S, Hsu MNK, Samaranayaka AGP, Li-Chan ECY (2009) Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. J Agric Food Chem 57:9234–9242.  https://doi.org/10.1021/jf9018245 CrossRefGoogle Scholar
  9. Chinedu E, Arome D, Ameh F (2013) A new method for determining acute toxicity in animal models. Toxicol Int 20:224.  https://doi.org/10.4103/0971-6580.121674 CrossRefGoogle Scholar
  10. Dell’Italia LJ, Husain A (2002) Dissecting the role of chymase in angiotensin II formation and heart and blood vessel diseases. Curr Opin Cardiol 17:374–379CrossRefGoogle Scholar
  11. Fienberg S, Cozier GE, Acharya KR, Chibale K, Sturrock ED (2018) The design and development of a potent and selective novel diprolyl derivative that binds to the N-domain of angiotensin-I converting enzyme. J Med Chem 61:344–359.  https://doi.org/10.1021/acs.jmedchem.7b01478 CrossRefGoogle Scholar
  12. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11:905–919CrossRefGoogle Scholar
  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J. et al. (2009) Gaussian 09, Revision E. 01; Gaussian Inc., Wallingford CT (software)Google Scholar
  14. Fu Y, Young JF, Rasmussen MK, Dalsgaard TK, Lametsch R, Aluko RE, Therkildsen M (2016) Angiotensin I–converting enzyme–inhibitory peptides from bovine collagen: insights into inhibitory mechanism and transepithelial transport. Food Res Int 89:373–381.  https://doi.org/10.1016/j.foodres.2016.08.037 CrossRefGoogle Scholar
  15. Fyhrquist F, Metsärinne K, Tikkanen I (1995) Role of angiotensin II in blood pressure regulation and in the pathophysiology of cardiovascular disorders J Hum Hypertens 9(Suppl 5):S19–S24Google Scholar
  16. Grootaert C, Matthijs B, Voorspoels S, Possemiers S, Smagghe G, Van Camp J (2017) Egg-derived bioactive peptides with ACE-inhibitory properties: a literature update. Food Funct 8:3847–3855CrossRefGoogle Scholar
  17. Herichova I, Szantoova K (2013) Renin-angiotensin system: upgrade of recent knowledge and perspectives. Endocr Regul 47:39–52.  https://doi.org/10.4149/endo_2013_01_39 CrossRefGoogle Scholar
  18. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38.  https://doi.org/10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  19. Jan Danser AH, Batenburg WW, van Esch JHM (2007) Prorenin and the (pro)renin receptor–an update. Nephrol Dial Transplant 22:1288–1292.  https://doi.org/10.1093/ndt/gfl846 CrossRefGoogle Scholar
  20. Jenis J, Kim JY, Uddin Z, Song YH, Lee H-H, Park KH (2017) Phytochemical profile and angiotensin I converting enzyme (ACE) inhibitory activity of Limonium michelsonii Lincz. J Nat Med 71:650–658.  https://doi.org/10.1007/s11418-017-1095-4 CrossRefGoogle Scholar
  21. Li J, Li Q, Li J, Zhou B (2014) Peptides derived from Rhopilema esculentum hydrolysate exhibit angiotensin converting enzyme (ACE) inhibitory and antioxidant abilities. Molecules 19:13587–13602.  https://doi.org/10.3390/molecules190913587 CrossRefGoogle Scholar
  22. Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98CrossRefGoogle Scholar
  23. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25.  https://doi.org/10.1016/S0169-409X(00)00129-0 CrossRefGoogle Scholar
  24. Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD, DePalma SM, Minissian MB, Orringer CE, Smith SC (2017) 2017 Focused update of the 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Fo. J Am Coll Cardiol 70:1785–1822.  https://doi.org/10.1016/j.jacc.2017.07.745 CrossRefGoogle Scholar
  25. Lorke D (1983) A new approach to practical acute toxicity testing. Arch Toxicol 54:275–287.  https://doi.org/10.1007/BF01234480 CrossRefGoogle Scholar
  26. Luo J, Zhang C, Liu Q, Ou S, Zhang L, Peng X (2017) Combinative effect of sardine peptides and quercetin alleviates hypertension through inhibition of angiotensin I converting enzyme activity and inflammation. Food Res Int 100:579–585.  https://doi.org/10.1016/j.foodres.2017.07.019 CrossRefGoogle Scholar
  27. Lv Y, Li Y, Yi Y, Zhang L, Shi Q, Yang J, Lv Y, Li Y, Yi Y, Zhang L, Shi Q, Yang J (2018) A genomic survey of angiotensin-converting enzymes provides novel insights into their molecular evolution in vertebrates. Molecules 23:2923.  https://doi.org/10.3390/molecules23112923 CrossRefGoogle Scholar
  28. Magvanjav O, Cooper-DeHoff RM, McDonough CW, Gong Y, Segal MS, Hogan WR, Johnson JA (2018) Antihypertensive therapy prescribing patterns and correlates of blood pressure control among hypertensive patients with chronic kidney disease. J Clin Hypertens.  https://doi.org/10.1111/jch.13429
  29. Maia LG, Ramos MC, Fernandes L, de Carvalho MHC, Campagnole-Santos MJ, Dos Santos RAS, Souza dos Santos RA (2004) Angiotensin-(1-7) antagonist A-779 attenuates the potentiation of bradykinin by captopril in rats. J Cardiovasc Pharmacol 43:685–691.  https://doi.org/10.1097/00005344-200405000-00011 CrossRefGoogle Scholar
  30. Molinspiration Cheminformatics (2016) Calculation of molecular properties and bioactivity score. Molinspiration.comGoogle Scholar
  31. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function J Comput Chem 19:1639–1662.  https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B CrossRefGoogle Scholar
  32. Morris GM, Ruth H, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791.  https://doi.org/10.1002/jcc.21256 CrossRefGoogle Scholar
  33. Natesh R, Schwager SLU, Sturrock ED, Acharya KR (2003) Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature 421:551–554.  https://doi.org/10.1038/nature01370 CrossRefGoogle Scholar
  34. Nawaz KAAA, David SM, Murugesh E, Thandeeswaran M, Kiran KG, Mahendran R, Palaniswamy M, Angayarkanni J (2017) Identification and in silico characterization of a novel peptide inhibitor of angiotensin converting enzyme from pigeon pea (Cajanus cajan). Phytomedicine 36:1–7.  https://doi.org/10.1016/j.phymed.2017.09.013 CrossRefGoogle Scholar
  35. Paiva L, Lima E, Neto AI, Baptista J (2017) Angiotensin I-converting enzyme (ACE) inhibitory activity, antioxidant properties, phenolic content and amino acid profiles of fucus spiralis L. Protein hydrolysate fractions. Mar Drugs 15:1DUMMY.  https://doi.org/10.3390/md15100311 CrossRefGoogle Scholar
  36. Parish RC, Miller LJ (1992) Adverse effects of angiotensin converting enzyme (ACE) inhibitors. Drug Saf 7:14–31.  https://doi.org/10.2165/00002018-199207010-00004 CrossRefGoogle Scholar
  37. Roszkowska-Chojecka MM, Walkowska A, Gawryś O, Baranowska I, Kalisz M, Litwiniuk A, Martyńska L, Kompanowska-Jezierska E (2015) Effects of chymostatin, a chymase inhibitor, on blood pressure, plasma and tissue angiotensin II, renal haemodynamics and renal excretion in two models of hypertension in the rat. Exp Physiol 100:1093–1105.  https://doi.org/10.1113/EP085325 CrossRefGoogle Scholar
  38. Shen JI, Saxena AB, Montez-Rath ME, Leng L, Chang TI, Winkelmayer WC (2017) Comparative effectiveness of angiotensin receptor blockers vs. angiotensin-converting enzyme inhibitors on cardiovascular outcomes in patients initiating peritoneal dialysis. J Nephrol 30:281–288.  https://doi.org/10.1007/s40620-016-0340-3 CrossRefGoogle Scholar
  39. Si W, Zhang T, Zhang L, Mei X, Dong M, Zhang K, Ning J (2016) Design, synthesis and bioactivity of novel phthalimide derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem Lett 26:2380–2382.  https://doi.org/10.1016/j.bmcl.2015.07.052 CrossRefGoogle Scholar
  40. Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM, Carolina N (2015) NIH public access. Compr Physiol 4:1201–1228.  https://doi.org/10.1002/cphy.c130040.Classical Google Scholar
  41. Sueta D, Koibuchi N, Hasegawa Y, Toyama K, Uekawa K, Katayama T, Ma MJ, Nakagawa T, Waki H, Maeda M, Ogawa H, Kim-Mitsuyama S (2014) Blood pressure variability, impaired autonomic function and vascular senescence in aged spontaneously hypertensive rats are ameliorated by angiotensin blockade. Atherosclerosis 236:101–107.  https://doi.org/10.1016/j.atherosclerosis.2014.06.016 CrossRefGoogle Scholar
  42. Tai H-M, Li C-C, Hung C-Y, Yin L-J (2018) Production of functional peptides with inhibition ability against angiotensin I-Converting enzyme using P. pastoris expression system. J Food Drug Anal 26:1097–1104.  https://doi.org/10.1016/j.jfda.2018.02.001 CrossRefGoogle Scholar
  43. Te Riet L, Van Esch JHM, Roks AJM, Van Den Meiracker AH, Danser AHHJ (2015) Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 116:960–975CrossRefGoogle Scholar
  44. Van Booven D, Marsh S, McLeod H, Carrillo MW, Sangkuhl K, Klein TE, Altman RB (2010) Cytochrome P450 2C9-CYP2C9. Pharm Genom 20:1.  https://doi.org/10.1097/FPC.0b013e3283349e84 CrossRefGoogle Scholar
  45. Vildmyren I, Drotningsvik A, Oterhals Å, Ween O, Halstensen A, Gudbrandsen OA, Vildmyren I, Drotningsvik A, Oterhals Å, Ween O, Halstensen A, Gudbrandsen OA (2018) Cod residual protein prevented blood pressure increase in Zucker fa/fa rats, possibly by inhibiting activities of angiotensin-converting enzyme and renin. Nutrients 10:1820.  https://doi.org/10.3390/nu10121820 CrossRefGoogle Scholar
  46. Wang B, Yang L-P, Zhang X-Z, Huang S-Q, Bartlam M, Zhou S-F (2009) New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab Rev 41:573–643.  https://doi.org/10.1080/03602530903118729 CrossRefGoogle Scholar
  47. WHO (2013) World Health Day 2013 - Hypertension. A Glob Br Hypertens 9.  https://doi.org/10.1136/bmj.1.4815.882-a
  48. Xu F, Chen H, Xu J, Liang X, He X, Shao B, Sun X, Li B, Deng X, Yuan M (2015) Synthesis, structure-activity relationship and biological evaluation of novel arylpiperzines as α1A/1D-AR subselective antagonists for BPH. Bioorganic. Med Chem 23:7735–7742.  https://doi.org/10.1016/j.bmc.2015.11.020 CrossRefGoogle Scholar
  49. Yu F, Zhang Z, Luo L, Zhu J, Huang F, Yang Z, Tang Y, Ding G, Yu F, Zhang Z, Luo L, Zhu J, Huang F, Yang Z, Tang Y, Ding G (2018) Identification and molecular docking study of a novel angiotensin-I converting enzyme inhibitory peptide derived from enzymatic hydrolysates of Cyclina sinensis. Mar Drugs 16:411.  https://doi.org/10.3390/md16110411 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unidad de Investigación en Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores-IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaMexico
  2. 2.Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de Medicina del Instituto Politécnico NacionalMexico CityMexico
  3. 3.Departamento de Bioquímica, Facultad de MedicinaUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico

Personalised recommendations