Advertisement

Cell cycle arrest and induction of apoptosis of newly synthesized pyranoquinoline derivatives under microwave irradiation

  • Ahmed M. FoudaEmail author
  • Ayman M. S. Youssef
  • Tarek H. Afifi
  • Ahmed Mora
  • Ahmed M. El-Agrody
Original Research
  • 6 Downloads

Abstract

A set of 2-amino-4-aryl-4H-pyrano[3,2-h]quinoline-3-carbonitrile derivatives were prepared via a one-pot, three-component condensation reaction between the substituted hydroxyquinoline derivatives, some aryl and/or hetaryl aldehydes, and malononitrile in an ethanol/piperidine solution in a microwave irradiation environment. The structure of the prepared compounds was instituted on the foundations of their spectral data: IR, 1H NMR, 13C NMR, and MS. Four human cancer cell lines, MCF-7, HCT-116, HepG-2, and A549 were utilized to evaluate the antiproliferative properties of the target compounds in comparison to the positive controls, Vinblastine and Colchicine using the MTT viability assay. The cell cycle arrest behavior, detected by propidium iodide as well as the apoptosis induction, which was monitored by the flow cytometer, using the Annexin V-FITC kits, was investigated. The results illustrated that the potent cytotoxic compounds induce cell cycle arrest at the G2/M phases and trigger apoptosis in the different tested cancer cells. Finally, the structure−activity relationship (SAR) study showcases the substitution of some specific groups at the 4-, 6-, and 9-positions in the prepared 2-amino-4H-pyrano[3,2-h]quinoline derivatives, which indicates that the lipophilicity manipulates the ability of these moieties against the diverse cell lines.

Keywords

Microwave synthesis 4H-Pyrano[3,2-h]quinoline Antitumor Cell cycle SAR 

Notes

Acknowledgements

The authors extend their appreciation to the Deanship of Science Research at King Khalid University for funding this work through General Research Project under Grant Number (G.R.P-168-39). In addition, the authors deeply thank the Regional Center for Mycology & Biotechnology (RCMP), Al-Azhar University, Cairo, Egypt, for carrying out the antitumor study and also, Mr. Ali Y. A. Alshahrani for drawing the 1H NMR and 13C NMR spectra.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2019_2325_MOESM1_ESM.docx (257 kb)
Supplementary Information.
44_2019_2325_MOESM2_ESM.docx (249 kb)
Supplementary Information.
44_2019_2325_MOESM3_ESM.docx (241 kb)
Supplementary Information.
44_2019_2325_MOESM4_ESM.docx (236 kb)
Supplementary Information.
44_2019_2325_MOESM5_ESM.docx (227 kb)
Supplementary Information.
44_2019_2325_MOESM6_ESM.docx (243 kb)
Supplementary Information.
44_2019_2325_MOESM7_ESM.docx (261 kb)
Supplementary Information.
44_2019_2325_MOESM8_ESM.docx (291 kb)
Supplementary Information.
44_2019_2325_MOESM9_ESM.docx (247 kb)
Supplementary Information.
44_2019_2325_MOESM10_ESM.docx (274 kb)
Supplementary Information.
44_2019_2325_MOESM11_ESM.docx (300 kb)
Supplementary Information.
44_2019_2325_MOESM12_ESM.docx (252 kb)
Supplementary Information.
44_2019_2325_MOESM13_ESM.docx (258 kb)
Supplementary Information.
44_2019_2325_MOESM14_ESM.docx (247 kb)
Supplementary Information.
44_2019_2325_MOESM15_ESM.docx (236 kb)
Supplementary Information.
44_2019_2325_MOESM16_ESM.docx (239 kb)
Supplementary Information.
44_2019_2325_MOESM17_ESM.docx (233 kb)
Supplementary Information.
44_2019_2325_MOESM18_ESM.docx (246 kb)
Supplementary Information.
44_2019_2325_MOESM19_ESM.docx (233 kb)
Supplementary Information.
44_2019_2325_MOESM20_ESM.docx (249 kb)
Supplementary Information.
44_2019_2325_MOESM21_ESM.docx (259 kb)
Supplementary Information.
44_2019_2325_MOESM22_ESM.docx (233 kb)
Supplementary Information.
44_2019_2325_MOESM23_ESM.docx (234 kb)
Supplementary Information.
44_2019_2325_MOESM24_ESM.docx (222 kb)
Supplementary Information.
44_2019_2325_MOESM25_ESM.docx (237 kb)
Supplementary Information.
44_2019_2325_MOESM26_ESM.docx (233 kb)
Supplementary Information.
44_2019_2325_MOESM27_ESM.docx (227 kb)
Supplementary Information.
44_2019_2325_MOESM28_ESM.docx (240 kb)
Supplementary Information.
44_2019_2325_MOESM29_ESM.docx (120 kb)
Supplementary Information.
44_2019_2325_MOESM30_ESM.docx (89 kb)
Supplementary Information.
44_2019_2325_MOESM31_ESM.docx (257 kb)
Supplementary Information.
44_2019_2325_MOESM32_ESM.docx (234 kb)
Supplementary Information.
44_2019_2325_MOESM33_ESM.docx (232 kb)
Supplementary Information.
44_2019_2325_MOESM34_ESM.docx (228 kb)
Supplementary Information.
44_2019_2325_MOESM35_ESM.docx (227 kb)
Supplementary Information.
44_2019_2325_MOESM36_ESM.docx (245 kb)
Supplementary Information.
44_2019_2325_MOESM37_ESM.docx (235 kb)
Supplementary Information.
44_2019_2325_MOESM38_ESM.docx (226 kb)
Supplementary Information.
44_2019_2325_MOESM39_ESM.docx (239 kb)
Supplementary Information.
44_2019_2325_MOESM40_ESM.docx (238 kb)
Supplementary Information.
44_2019_2325_MOESM41_ESM.docx (233 kb)
Supplementary Information.
44_2019_2325_MOESM42_ESM.docx (243 kb)
Supplementary Information.
44_2019_2325_MOESM43_ESM.docx (241 kb)
Supplementary Information.
44_2019_2325_MOESM44_ESM.docx (244 kb)
Supplementary Information.
44_2019_2325_MOESM45_ESM.docx (553 kb)
Supplementary Information.
44_2019_2325_MOESM46_ESM.docx (664 kb)
Supplementary Information.

References

  1. Al-Ghamdi AM, Abd EL-Wahab AHF, Mohamed HM, El-Agrody AM (2012) Synthesis and antitumor activities of 4H-pyrano[3,2-h]quinoline-3-carbonitrile, 7H-pyrimido[4′,5′:6,5] pyrano[3,2-h]quinoline, and 14H-Pyrimido[4′,5′:6,5]pyrano[3,2-h][1,2,4]triazolo[1,5-c]quinoline derivative. Lett Drug Des Discov 9:459–470CrossRefGoogle Scholar
  2. Balamurugan K, Jeyachandran V, Perumal S, Manjashetty TH, Yogeeswari P, Sriram D (2010) A microwave-assisted, facile, regioselective Friedländer synthesis and antitubercular evaluation of 2,9-diaryl-2,3-dihydrothieno[3,2-b]quinolones. Eur J Med Chem 45:682–688CrossRefGoogle Scholar
  3. Batt DG, Petraitis JJ, Sherk SR, Copeland RA, Dowling RL, Taylor TL, Jones EA, Magolda RL, Jafee BD (1998) Heteroatom- and carbon-linked biphenyl analogs of Brequinar as immunosuppressive agents. Bioorg Med Chem Lett 8:1745–1750CrossRefGoogle Scholar
  4. Cairns H, Cox D, Gould K, Ingall A, Suschitzky J (1985) New antiallergic pyrano[3,2-g] quinoline-2, 8-dicarboxylic acids with potential for the topical treatment of asthma. J Med Chem 28:1832–1834CrossRefGoogle Scholar
  5. Chang FS, Chen W, Wang C, Tzeng CC, Chen YL (2010) Synthesis and antiproliferative evaluations of certain 2-phenylvinylquinoline (2-styrylquinoline) and 2-furanylvinylquinoline derivatives. Bioorg Med Chem 18:124–133CrossRefGoogle Scholar
  6. Chen IS, Tsai IL, Teng C, Chen JJ, Chang YA, Ko FN, Lu MC, Pezzuto JM (1997) Pyranoquinoline alkaloids from Zanthoxylum simulans. Phytochemistry 46:525–529CrossRefGoogle Scholar
  7. Chen IS, Wu SJ, Tsai IL, Wu TS, Pezzuto JM, Lu MC, Chai H, Suh N, Teng CMJ (1994) Chemical and bioactive constituents from Zanthoxylum simulans. Nat Prod 57:1206–1211CrossRefGoogle Scholar
  8. Chen J, Chen P, Liao C, Huang S, Chen I (2007) New phenylpropenoids, bis (1-phenylethyl) phenols, bisquinolinone alkaloid, and anti-inflammatory constituents from Zanthoxylum integrifoliolum. J Nat Prod 70:1444–1448CrossRefGoogle Scholar
  9. Demirci F, Bas¸er KHC (2002) Bioassay techniques for drug development By Atta-ur-Rahman, M. Iqbal Choudhary (HEJRIC, University of Karachi, Pakistan), William J. Thomsen (Areana Pharmaceuticals, San Diego, CA). Harwood Academic Publishers, Amsterdam, the Netherlands. xii+223pp. J Nat Prod 65:1086–1087Google Scholar
  10. Doube D, Blouin M, Brideau C, Chan C, Desmarais C, Ethier D, Falgueyret JP, Friesen RW, Girard M, Girard Y, Guay J, Tagari P, Young RN (1998) Quinolines as potent 5-lipoxygenase inhibitors: synthesis and biological profile of L-746,530. Bioorg Med Chem Lett 8:1255–1260CrossRefGoogle Scholar
  11. Edmont D, Rocher R, Plisson C, Chenault J (2000) Synthesis and evaluation of quinoline carboxyguanidines as antidiabetic agents. Bioorg Med Chem Lett 10:1831–1834CrossRefGoogle Scholar
  12. El-Agrody AM, Abd-Rabboh HSM, Al-Ghamdi AM (2013) Synthesis, antitumor activity, and structure-activity relationship of some 4H-pyrano[3,2-h]quinolone and 7H-pyrimido[4′,5′:6,5]pyrano[3,2-h]quinolone derivatives. Med Chem Res 22:1339–1355CrossRefGoogle Scholar
  13. El-Agrody AM, Al-Ghamdi AM (2011) Synthesis of certain novel 4H-pyrano[3,2-h] quinoline derivatives ARKIVOC xi_134–146Google Scholar
  14. El-Agrody AM, Khattab ESAEH, Fouda AM, Al-Ghamdi AM (2012) Synthesis and antitumor activities of certain novel 2-amino-9-(4-halostyryl)-4H-pyrano[3,2-h]quinoline derivatives. Med Chem Res 12:4200–4213CrossRefGoogle Scholar
  15. Fouda AM (2017) Halogenated 2-amino-4H-pyrano[3,2-h]quinoline-3-carbonitriles as antitumor agents and structure-activity relationships of the 4-, 6-, and 9-positions. Med Chem Res 26:302–313CrossRefGoogle Scholar
  16. Hammouda MAA, EL-Hag FA-AA, El-Serwy WS, El-Manawaty MA (2015) Synthesis and characterization of new fused 4H-Pyranquinoline carbonitrile derivatives with anticipated antitumor biological activity. RJPBCS 6:200–208Google Scholar
  17. Hassanin HM, Ibrahim MA, Alnamer YA-S (2012) Synthesis and antimicrobial activity of some novel 4-hydroxyquinolin-2(1H)-ones and pyrano[3,2-c]quinolinones from 3-(1-ethy1-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-3-oxopropanoic acid. Turk J Chem 36:682–699Google Scholar
  18. Isaka M, Tanticharoen M, Kongsaeree P, Thebtaranonth Y (2001) Structures of cordypyridones A−D, antimalarial N-hydroxy- and N-methoxy-2-pyridones from the insect pathogenic fungus Cordyceps nipponica. J Org Chem 66:4803–4808CrossRefGoogle Scholar
  19. Kamperdick C, Van NH, Van Sung T, Adam GB (1999) Bisquinolinone alkaloids from Melicope ptelefolia. Phytochemistry 50:177–181CrossRefGoogle Scholar
  20. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284CrossRefGoogle Scholar
  21. Kaur K, Jain M, Kaur T, Jain R (2009) Antimalarials from nature. Bioorg Med Chem 17:3229–3256CrossRefGoogle Scholar
  22. Kidwai M, Saxena S, Khan MKR, Thukra SS (2005) Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg Med Chem Lett 15:4295–4298CrossRefGoogle Scholar
  23. Koizumi F, Fukumitsu N, Zhao J, Chanklan R, Miyakawa T, Kawahara S, Iwamoto S, Suzuki M, Kakita S, Rahayu E, Hosokawa S, Tatsuta K (2007) YCM1008A, a novel Ca 2+-signaling inhibitor, produced by Fusarium sp. YCM1008. J Antibiot 60:455–458CrossRefGoogle Scholar
  24. Maalej E, Chabchoub F, Oset-Gasque MJ, Esquivias-Pérez M, González MP, Monjas L, Pérez C, de los Ríos C, Rodríguez-Franco MI, Iriepa I, Moraleda I, Chioua M, Romero A, Marco-Contelles J, Samadi A (2012) Synthesis, biological assessment, and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7H-benzo[7,8]chromeno[2,3-b]quinolin-8-amines as potential drugs for the treatment of Alzheimer’s disease. Eur J Med Chem 54:750–763CrossRefGoogle Scholar
  25. Magesh CJ, Makesh SV, Perumal PT (2004) Highly diastereoselective inverse electron demand (IED) Diels–Alder reaction mediated by chiral salen–AlCl complex: the first, target-oriented synthesis of pyranoquinolines as potential antibacterial agents. Bioorg Med Chem Lett 14:2035–2040CrossRefGoogle Scholar
  26. Marco JL, Martinez-Grau A (1997) Friedländer reaction on 2-amino-3-cyano-4H-pyrans: synthesis of derivatives of 4H-pyrano[2, 3-b]quinoline, new tacrine analogues. Bioorg Med Chem Lett 7:3165–3170CrossRefGoogle Scholar
  27. Mekheimer RA, Sadek KU (2009) Microwave-assisted reactions: three-component process for the synthesis of 2-amino-2-chromenes under microwave heating Chin Chem Lett 20:271–274CrossRefGoogle Scholar
  28. Mol W, Matyia M, Filip B, Wietrzyk J, Boryczka S (1984) Synthesis and antiproliferative activity in vitro of novel (2-butynyl) thioquinolines. Bioorg Med Chem 16:8136–8141CrossRefGoogle Scholar
  29. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  30. Narsinh D, Anamik S (2001) Synthesis and anti-HIV studies of some substituted pyrimidinediones, ethoxy pyrano (3,2-C) quinolines and hydrazino pyrano (3,2-C) quinolines. Ind J Pharm Sci 63:211–215Google Scholar
  31. Nesterova IN, Alekseeva LM, Andreeva LM, Andreeva NI, Golovira SM, Granik VG (1995) Synthesis and study the pharmacological activity of derivatives of 5-dimethylaminopyrano-[3,2-c]quinolin-2-ones Pharm Chem J 29:111–114CrossRefGoogle Scholar
  32. Prasad P, Shobhashana PG, Patel MP (2017) An efficient synthesis of 4H-pyranoquinolinone derivatives catalyzed by a versatile organocatalyst tetra-n-butylammonium fluoride and their pharmacological screening. R Soc Open Sci 4:170764.  https://doi.org/10.1098/rsos.170764.CrossRefGoogle Scholar
  33. Qu Z, Cui J, Harata-Lee Y, Aung TN, Feng Q, Raison JM (2016) Identification of candidate anti-cancer molecular mechanisms of Compound Kushen Injection using functional genomics. Oncotarget 10:66003–66019Google Scholar
  34. Rahman AU, Choudhary MI, Thomsen WJ (2001) Bioassay technique for drug development. Harwood Academic Publishers, Reading, UK.Google Scholar
  35. Ramesh M, Mohan PA, Shanmugam P (1984) A convenient synthesis of flindersine, atanine and their analogues. Tetrahedron 40:4041–4049CrossRefGoogle Scholar
  36. Sechi M, Rizzi G, Bacchi A, Carcelli M, Rogolino D, Pala N, Sanchez TW, Taheri L, Dayam R, Neamati N (2009) Design and synthesis of novel dihydroquinoline-3-carboxylic acids as HIV-1 integrase inhibitors. Bioorg Med Chem 17:2925–2935CrossRefGoogle Scholar
  37. Shen JK, Du HP, Yang M, Wang YG, Jin J (2009) Casticin induces leukemic cell death through apoptosis and mitotic catastrophe. Ann Hematol 88:743–752CrossRefGoogle Scholar
  38. Shi A, Nguyen TA, Battina SK, Rana S, Takemoto DJ, Chiang PK, Hua DH (2008) Synthesis and anti-breast cancer activities of substituted quinolones. Bioorg Med Chem Lett 18:3364–3368CrossRefGoogle Scholar
  39. Shi L, Wang M, Fan CA, Zhang FM, Tu YQ (2004) Microwave-promoted three-component coupling of aldehyde, alkyne, and amine via C−H activation catalyzed by copper in water. Org Lett 6:1001–1003CrossRefGoogle Scholar
  40. Siliveri S, Radhika T, Harinadha BV, Raj S, Madhava RB (2017) Synthesis and biological evaluation of pyrano[3,2-h]quinoline carbonitriles. Int J Green Pharm 11:S423–S429Google Scholar
  41. Sparatore A, Basilico N, Casagrande M, Parapini S, Taramelli D, Brun R, Wittlin S, Sparatore F (2008) Antimalarial activity of novel pyrrolizidinyl derivatives of 4-aminoquinoline. Bioorg Med Chem Lett 18:3737–3740CrossRefGoogle Scholar
  42. Surpur MP, Kshirsagar S, Samant SD (2009) Exploitation of the catalytic efficacy of Mg/Al hydrotalcite for the rapid synthesis of 2-aminochromene derivatives via a multicomponent strategy in the presence of microwaves. Tetrahedron Lett 50:719–722CrossRefGoogle Scholar
  43. Thomas KD, Adhikari AV, Shetty NS (2010) Design, synthesis and antimicrobial activities of some new quinoline derivatives carrying 1,2,3-triazole moiety. Eur J Med Chem 45:3803–3810CrossRefGoogle Scholar
  44. Van Engeland M, Nieland LJW, Ramaekers FCS, Schutte B, Reutelingsperger CPM (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9CrossRefGoogle Scholar
  45. Vermes I, Haanen C, Steffens-Nakken H, Teutelinger C (1995) A novel assay for apoptosis: flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled annexin V. J Immunol Methods 184:39–51CrossRefGoogle Scholar
  46. Wabo HK, Tane P, Connolly JD, Okunji CC, Schuster B, Iwu MM (2005) Tabouensinium chloride, a novel quaternary pyranoquinoline alkaloid from Araliopsis tabouensis. Nat Prod Res 19:591–595CrossRefGoogle Scholar
  47. Wu X, Larhed M (2005) Microwave-enhanced aminocarbonylations in water. Org Lett 7:3327–3329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed M. Fouda
    • 1
    Email author
  • Ayman M. S. Youssef
    • 1
    • 2
  • Tarek H. Afifi
    • 3
  • Ahmed Mora
    • 4
  • Ahmed M. El-Agrody
    • 4
  1. 1.Chemistry Department, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceFayoum UniversityFayoumEgypt
  3. 3.Chemistry Department, Faculty of ScienceTaibah UniversityAl-Madinah Al-MunawarahSaudi Arabia
  4. 4.Chemistry Department, Faculty of ScienceAl-Azhar UniversityNar City, CairoEgypt

Personalised recommendations