Medicinal Chemistry Research

, Volume 27, Issue 11–12, pp 2482–2493 | Cite as

Diazabenzo[a]phenoxazone sulphonamides: synthesis, in-silico and in-vitro antimicrobial studies

  • Mercy A. EzeokonkwoEmail author
  • Cosmas C. Eze
  • Sunday N. Okafor
  • Efeturi A. Onoabedje
  • Evelyn U. Godwin-Nwakwasi
  • Fidelia N. Ibeanu
Original Research


The syntheses of new sulphonamide derivatives of 8,10-diazabenzo[a]phenoxazones are reported. The condensation of 4,5-diamino-6-hydroxy-2-mercaptopyrimidine and 2,3-dichloro-1,4-naphthoquinone in a basic medium gave the key functional intermediate, 11-amino-6-chloro-9-mercapto-8,10-diazabenzo[a]phenoxazin-5-one. The conversion of the later compound to its sulphonamide derivatives was achieved via nickel catalyzed cross-coupling Buchwald-Hartwig protocol. Reaction between 11-amino-6-chloro-9-mercapto-8,10-diazabenzo[a]phenoxazin-5-one and various aryl sulphonamides and sulphonyl chlorides furnished eight new mono sulphonamide substituted diazaphenoxazone compounds. Subsequent coupling of mono sulphonamide substituted diazaphenoxazone compounds 5a-d with four different arylsulphonyl chlorides under similar reaction conditions gave the disubstituted derivatives 8a-d. The products were isolated in 74 – 88% yields and characterized by means of Uv-visible, FT-IR, 1H-NMR, 13C-NMR, and Mass spectroscopy. The synthesized compounds were screened for antimicrobial activity against bacterial strains: Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhi and Klebsiella pneumonia, and fungal strains, Aspergillus niger, and Candida albican, using agar-well diffusion method. The activities of the compounds were compared with that of colymycin, which is a strong antibacterial, and antifungal drug, Most of the compounds showed appreciable antimicrobial activities comparable with the activity of colymycin. The in silico study revealed that all the synthesized compounds showed significant binding affinity for both intact and mutated DNA gyrase. Compounds 8a and 5b showed the highest binding affinities of -12.31 and -13.30 kcal/mol for intact and mutated DNA gyrase respectively.


Sulphonamide Diazaphenoxazone Antimicrobial activity Nickel catalysis DNA gyrase 


  1. Aarestrup FM (2009) Occurrence of glycopeptides resistance among enterococcus faecium isolates from conventional and ecological poultry farms. Micro Drug Resist 1(3):255. CrossRefGoogle Scholar
  2. Adeniyi BA, Odelola HA (1996) Antimicrobial potentials of diospyros mespiliforrmis (Ebenaceae). Afr J Med Sci 255:211–224Google Scholar
  3. Alovero F, Nieto M, Mazzieri MR, Then R, Manzo RH (1998) Mode of Action of Sulfanilyl Fluoroquinolones. Antimicrob Agents Chemother 42(6):1495–1498CrossRefGoogle Scholar
  4. Alqasoumi SI, Al-Taweel AM, Alafeefy AM, Noaman E, Ghorab MM (2010) Discovering some novel tetrahydroquinoline derivatives bearing the biologically active sulfonamide moiety as a new class of antitumor agents. Eur J Med Chem 45(5):1849–1853CrossRefGoogle Scholar
  5. Barness EC, Bezerra-Gomez P, Nett M, Dandamycin HC, Chandrananimycin E (2015) benzoxazines from streptomycesgriseus. J Antibiot 68:463CrossRefGoogle Scholar
  6. Bates AD, Maxwell A (2005) DNA Topology. Oxford University Press, OxfordGoogle Scholar
  7. Boothroyd B, Clark ER (1952) Aminophenoxazines as possible antitubercular agents. J. Chem. Soc. 1499Google Scholar
  8. Chen Z, Xu W, Liu K, Yang S, Fan H, Bhadury PS, Zhang DY (2010) Synthesis and antiviral activity of 5-(4-chlorophenyl)-1,3,4-thiadiazole sulfonamides. Molecules 9 15(12):9046–9056CrossRefGoogle Scholar
  9. Chu Daniel TUS (1986) Pyrido[3,2,1-k]phenoxazines and antibacterial use. Chem Abstr 104:109663kGoogle Scholar
  10. Chu DTW, Maleczka RE (1987) Synthesis of 4-oxo-4H–quino[2,3,4-i,j][1,4]-benoxazine-5-carboxylic acid derivatives. J Heterocycl Chem 24:453–456CrossRefGoogle Scholar
  11. Eshghi H, Rahimizadeh M, Zokaei M, Eshghi S, Faghihi Z, Tabasi E, Kihanya M (2011) Synthesis and antimicrobial activity of some new macrocyclic bis-sulphonamides and disulphides. Eur Jour Chem 2(1):47–50CrossRefGoogle Scholar
  12. Gross CH, Parsons JD, Grossman TH, Charifson PS, Bellon S, Jernee J, Dwyer M, Chambers SP, Markland W, Botfield M, Scott A, Raybuck (2003) Active-site residues of Escherichia coli DNA Gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to Novobiocin resistance. Antimicrob Agents Chemother 47(3):1037–1046. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Harton JK, Thimmaiah KN, Harwood FC, Kuttesch JF, Houghton PJ (1993) Pharmacological characterization of n-substituted phenoxazines directed towards reversing vinca alkaloids resistance in multi drug resistant cancer cells. Mol. Pharmocol. Abstra 44:552–559Google Scholar
  14. Hooper DC (1998) Structure of grepafloxacin relative to activity and safety profile. Clinical Microbiology and Infection 4(1):515–520. CrossRefGoogle Scholar
  15. Ibeanu FN, Onoabedje EA, Ibezim A, Okoro UC (2018) Synthesis, characterization, computational and biological study of novel azabenzo[a]phenothiazine and azabenzo[b]phenoxazine heterocycles as potential antibiotic agent. Med Chem Res. CrossRefGoogle Scholar
  16. Lopez M, Drillaud N, Bornaghi LF, Pouslen SA (2009) Synthesis of s-glycosyl primary sulphonamides. J Org Chem 74(7):2811–2816CrossRefGoogle Scholar
  17. Marble A (1971) Glibenclamide, a new sulphonylurea: wither oral hypoglycaemic agents? Drugs 1(2):109–115CrossRefGoogle Scholar
  18. Maxwell A (1997) DNA gyrase as a drug target. Trends Microbiol 5:102–109CrossRefGoogle Scholar
  19. Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 7 415(6872):673–679CrossRefGoogle Scholar
  20. Okafor CO (1986) Synthesis, properties and uses of angular phenoxazines. Dyes Pigments l7(2):103–131CrossRefGoogle Scholar
  21. Okorie VC (2005) Principles of the pharmaceutical application of antimicrobial agents. Denmak Publishers, Enugu, Nigeria, p 45–47Google Scholar
  22. Onoabedje EA, Okoro UC, Sarkar A, Knight DW (2016) Functionalization of linear and angular phenothiazine and phenoxazine ring systems via Pd(0)Xphos mediated Suzuki-Miyaura cross-coupling reactions. J Heterocycl Chem 53(6):1787–1794CrossRefGoogle Scholar
  23. Onoabedje EA, Okoro UC, Sarkar A, Knight DW (2016) Synthesis and structure of new alkynyl derivatives of phenothiazine and phenoxazine. J Sulfur Chem 37(3):269–281. 10. 1080/17415993, 2015.1131827CrossRefGoogle Scholar
  24. Ozbek N, Katircioglu H, Karacan N, Baykal T (2007) Synthesis, characterization and antimicrobial activity of new aliphatic sulphonamides. Bioorg & Med Chem 15(15):5105–5109CrossRefGoogle Scholar
  25. Rádl S, Zikán V (1989) Synthesis and antimicrobial activity of some 3-oxo-3H–pyrido[3,2,1-kl]phenoxazine-2-carboxylic acids. Collect Czech Chem Commun 54:506–515CrossRefGoogle Scholar
  26. Rostom SAF (2006) Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulphonamide, sulfonylurea(-thiourea)pharmacophores, and some derived thiazole ring systems. Bioorg Med Chem 14(19):6475–6485CrossRefGoogle Scholar
  27. Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT (2003) Anticancer and antiviral sulphonamides. Curr Med Chem 10(11):925–953CrossRefGoogle Scholar
  28. Setter SM, Iltz JL, Fincham JE, Cambell RK, Baker DE (2005) Phosphodiesterase 5 inhibitors for erectile dysfunction (2005). Ann Pharmacother 39(7-8):1286–1295CrossRefGoogle Scholar
  29. Shen CH, Wang YF, Kovalevsky AY, Harrison RW, Weber IT (2010) Amprenavir complexes with hiv-1 protease and its drug-resistant mutants altering hydrophobic clusters. FEBS J 277(18):3699–3714CrossRefGoogle Scholar
  30. Shimamoto T, Tomada A, Ishida R, Ohyashiki K (2001) Antitumor effects of a novel phenoxazine derivatives on human leukaemia cells (AACR). Ame-Asso. for. Cancer Res 7:704–708Google Scholar
  31. Threlfall EJ, Ward LR, Skinner JA, Rowe B (2009) Increase in multiple antibiotic resistance in nontyphoidal salmonellas from humans in England and Wales: A comparison of Data for 1994 and 1996. Microb Drug Resist 3(3):263. CrossRefGoogle Scholar
  32. Ueda Y, Takahashi Y, Yamashita H, Kaneko H, Mimori A (2011) genetic heterogeneity of hepatitis c virus in association with antiviral therapy determined by ultra-deep sequencing. Nihon Rinsho Meneki Gakkai Kaishi 6(9):24907Google Scholar
  33. Ugwu DI, Okoro UC, Chukwurah TD (2014) Nickel catalyzed synthesis of n-aryl and n-heteroaryl substituted benzene sulphonamides and their biological activity evaluation. Med Chem 4:357–360. 10417212151-0444.1000165CrossRefGoogle Scholar
  34. Vardayan RS, Hruby VJ (2006) Synthesis of essential drugs. Elsevier, Amsterdum, 499Google Scholar
  35. Veber DF, Stephen RJ, Hung-Yuan C, Brian RS, Keith WW, Kenneth DK (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623. CrossRefPubMedGoogle Scholar
  36. Venanzi LM (1958) Tetrahedral nickel (II) complexes and the factors determining their formation, part I. Bistriphenylphosphine nickel (II) compounds. J. Chem. Soc. 719-724Google Scholar
  37. Wang JC (2009) A journey in the world of DNA rings and beyond. Annu Rev Biochem 78:31–54. CrossRefPubMedGoogle Scholar
  38. Wang Q, Zhang YX, Wang M, Tan Y, Hu X, He H, Xiao C, You X, Wang Y, Gan M (2017) Neo-actinomycins A and B, natural antinomycins bearing the 5H-oxazolo[4,5-b]phenoxazine chromophore, from marine derived Streptomyces species IMBO94. Sci Rep 7:3591. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Kiebe G (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COx-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 47(3):550–557CrossRefGoogle Scholar
  40. Yu X, Zhang M, Annamalai A, Bansod P, Narula G, Tse-Dinh -C, Sun D (2017) Synthesis, evaluation, and CoMFA study of fluoroquinophenoxazine derivatives as bacterial topoisomerase IA inhibitors. Eur J Med Chem 125:515–527. CrossRefPubMedGoogle Scholar
  41. Zimmerman S, Innocenti A, Casini A, Ferry JG, Scozzafava A, Supuran CT (2004) Carbonic anhydrase inhibitors. Inhibition of the prokaryotic beta and gamma-class enzymes from archaea with sulfonamides. Bioorg & Med Chem Lett 14:6001–6006CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pure & Industrial ChemistryUniversity of NigeriaNsukkaNigeria
  2. 2.Natural Science Unit, School of General studiesUniversity of NigeriaNsukkaNigeria
  3. 3.Department of Pharmaceutical and Medicinal ChemistryUniversity of NigeriaNsukkaNigeria
  4. 4.Department of ChemistryGregory UniversityUturuNigeria

Personalised recommendations