Medicinal Chemistry Research

, Volume 27, Issue 1, pp 23–36 | Cite as

Enriching biologically relevant chemical space around 2-aminothiazole template for anticancer drug development

  • Sarah Titus
  • Kumaran G. SreejalekshmiEmail author
Original Research


Combinatorial library based on a biologically relevant core template, 2-aminothiazole, with immense scope of diversity multiplication was designed for anticancer therapeutics. The diversity elements were incorporated through azomethine linkage on C4 hydrazine terminus in 5-benzoyl-2-arylamino-1,3-thiazole using isopropyl, isobutyl, cyclohexyl, and benzyl fragments and enrichment of chemical space therein was evaluated. Molecular docking of an in-house 200-member virtual library in anticancer target proteins- estrogen receptor (3ERT), cyclin dependent kinase (3FDN), and Aurora kinase (3LAU), identified selective binding of the compounds as ATP competitive inhibitors of 3LAU. The synthetic access to the compounds was realized through a facile and economically viable [4 + 1] ring synthesis strategy employing commercially available reagents. The in vitro cytotoxicity of selected members against human cancer cell lines indicated the potential of the designed scaffold in anticancer drug discovery, where compounds 2b, 3b, and 4b were found to be active against MCF-7 and A549 cell lines in less than ten micro molar concentrations. Moreover the predicted physicochemical properties pointed to the drug appropriateness for most of these molecules, that they obey the rule of five (RO5). Thus we present 2-alkyl/arylamino-4-alkylidene/arylidenehydrazino-5-benzoyl-1,3-thiazoles as a prospective and expandable skeleton for diversity oriented synthesis and in the discovery of selective Aurora kinase inhibitors.


Chemical space 2-Aminothiazole HAT VCHATL Anticancer activity Molecular docking 



ST acknowledges IIST for financial support. Thanks are due to NIIST-TVM, IISER-TVM for support in NMR recording and ACTREC Mumbai for in vitro anticancer screening.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_2039_MOESM1_ESM.docx (4.7 mb)
Supplementary Information


  1. Altıntop MD, Özdemir A, Turan-Zitouni G, Ilgın S, Atlı Ö, Demirci F, Kaplancıklı ZA (2014) Synthesis and in vitro evaluation of new nitro-substituted thiazolyl hydrazone derivatives as anticandidal and anticancer agents. Molecules 19:14809–14820CrossRefPubMedGoogle Scholar
  2. Ayati A, Emami S, Asadipour A, Shafiee A, Foroumadi A (2015) Recent applications of 1, 3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur JMed Chem 97:699–718CrossRefGoogle Scholar
  3. Bennani YL (2012) Drug discovery in the next decade: innovation needed ASAP. Drug Discov Today 17:S31–S44CrossRefPubMedGoogle Scholar
  4. Bharti SK, Nath G, Tilak R, Singh S (2010) Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2, 4-disubstituted thiazole ring. Eur J Med Chem 45:651–660CrossRefPubMedGoogle Scholar
  5. Carpinelli P, Ceruti R, Giorgini ML, Cappella P, Gianellini L, Croci V, Degrassi A, Texido G, Rocchetti M, Vianello P (2007) PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. Mol Cancer Ther 6:3158–3168CrossRefPubMedGoogle Scholar
  6. Carradori S, Secci D, Bolasco A, Rivanera D, Mari E, Zicari A, Lotti LV, Bizzarri B (2013) Synthesis and cytotoxicity of novel (thiazol-2-yl) hydrazine derivatives as promising anti-Candida agents. Eur J Med Chem 65:102–111CrossRefPubMedGoogle Scholar
  7. Chen G, Zheng S, Luo X, Shen J, Zhu W, Liu H, Gui C, Zhang J, Zheng M, Puah CM (2005) Focused combinatorial library design based on structural diversity, druglikeness and binding affinity score. J Comb Chem 7:398–406CrossRefPubMedGoogle Scholar
  8. Cheng Y, Avula SR, Gao W-W, Addla D, Tangadanchu VKR, Zhang L, Lin J-M, Zhou C-H (2016) Multi-targeting exploration of new 2-aminothiazolyl quinolones: synthesis, antimicrobial evaluation, interaction with DNA, combination with topoisomerase IV and penetrability into cells. Eur J Med Chem 124:935–945CrossRefPubMedGoogle Scholar
  9. Dandawate P, Ahmad A, Deshpande J, Swamy KV, Khan EM, Khetmalas M, Padhye S, Sarkar F (2014) Anticancer phytochemical analogs 37: synthesis, characterization, molecular docking and cytotoxicity of novel plumbagin hydrazones against breast cancer cells. Bioorg Med Chem Lett 24:2900–2904CrossRefPubMedGoogle Scholar
  10. Das D, Sikdar P, Bairagi M (2016) Recent developments of 2-aminothiazoles in medicinal chemistry. Eur J Med Chem 109:89–98CrossRefPubMedGoogle Scholar
  11. Deng Z-L, Du C-X, Li X, Hu B, Kuang Z-K, Wang R, Feng S-Y, Zhang H-Y, Kong D-X (2013) Exploring the biologically relevant chemical space for drug discovery. J Chem Inf Model 53:2820–2828CrossRefPubMedGoogle Scholar
  12. Dilek Altıntop M, Cantürk Z, Baysal M, Asım Kaplancıklı Z (2016) Synthesis and evaluation of new thiazole derivatives as potential antimicrobial agents. Lett Drug Des Discov 13:903–911CrossRefGoogle Scholar
  13. Dilek Altıntop M, Ozdemir A, Ilgın S, Atli O (2014) Synthesis and biological evaluation of new pyrazole-based thiazolyl hydrazone derivatives as potential anticancer agents. Lett Drug Des Discov 11:833–839CrossRefGoogle Scholar
  14. Dimova D, Bajorath J (2016) Systematic design of analogs of active compounds covering more than 1000 targets. MedChemComm 7:859–863CrossRefGoogle Scholar
  15. Dobson CM (2004) Chemical space and biology. Nature 432:824–828CrossRefPubMedGoogle Scholar
  16. Dua R, Shrivastava S, Sonwane S, Srivastava S (2011) Pharmacological significance of synthetic heterocycles scaffold: a review. Adv Biol Res 5:120–144Google Scholar
  17. Fancelli D, Moll J, Varasi M, Bravo R, Artico R, Berta D, Bindi S, Cameron A, Candiani I, Cappella P (2006) 1, 4, 5, 6-tetrahydropyrrolo [3, 4-c] pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J Med Chem 49:7247–7251CrossRefPubMedGoogle Scholar
  18. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196CrossRefPubMedGoogle Scholar
  19. Gallardo-Godoy A, Gever J, Fife KL, Silber BM, Prusiner SB, Renslo AR (2011) 2-Aminothiazoles as therapeutic leads for prion diseases. J Med Chem 54:1010–1021CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gorczynski MJ, Leal RM, Mooberry SL, Bushweller JH, Brown ML (2004) Synthesis and evaluation of substituted 4-aryloxy-and 4-arylsulfanyl-phenyl-2-aminothiazoles as inhibitors of human breast cancer cell proliferation. Bioorg Med Chem 12:1029–1036CrossRefPubMedGoogle Scholar
  21. Gorse A-D (2006) Diversity in medicinal chemistry space. Curr Top Med Chem 6:3–18CrossRefPubMedGoogle Scholar
  22. Green DA, Antholine WE, Wong SJ, Richardson DR, Chitambar CR (2001) Inhibition of malignant cell growth by 311, a Novel Iron chelator of the pyridoxal isonicotinoyl hydrazone class effect on the R2 subunit of ribonucleotide reductase. Clin Cancer Res 7:3574–3579PubMedGoogle Scholar
  23. Hajduk PJ, Galloway WR, Spring DR (2011) Drug discovery: a question of library design. Nature 470:42–43CrossRefPubMedGoogle Scholar
  24. Holla BS, Malini K, Rao BS, Sarojini B, Kumari NS (2003) Synthesis of some new 2, 4-disubstituted thiazoles as possible antibacterial and anti-inflammatory agents. Eur J Med Chem 38:313–318CrossRefPubMedGoogle Scholar
  25. John Harris C, Hill RD, Sheppard DW, Slater MJ, Stouten PFW (2011) The design and application of target-focused compound libraries. Comb Chem High Throughput Screen 14:521–531CrossRefPubMedGoogle Scholar
  26. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS All-Atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236Google Scholar
  27. Kalinowski DS, Sharpe PC, Bernhardt PV, Richardson DR (2007) Design, synthesis, and characterization of new iron chelators with anti-proliferative activity: structure-activity relationships of novel thiohydrazone analogs. J Med Chem 50:6212–6225CrossRefPubMedGoogle Scholar
  28. Kaplánek R, Havlík M, Dolenský B, Rak J, Džubák P, Konečný P, Hajdúch M, Králová J, Král V (2015a) Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger’s base skeleton. Bioorg Med Chem 23:1651–1659CrossRefPubMedGoogle Scholar
  29. Kaplánek R, Jakubek M, Rak J, Kejík Z, Havlík M, Dolenský B, Frydrych I, Hajdúch M, Kolář M, Bogdanová K (2015b) Caffeine–hydrazones as anticancer agents with pronounced selectivity toward T-lymphoblastic leukemia cells. Bioorg Chem 60:19–29CrossRefPubMedGoogle Scholar
  30. Kashyap SJ, Garg VK, Sharma PK, Kumar N, Dudhe R, Gupta JK (2012) Thiazoles: having diverse biological activities. Med Chem Res 21:2123–2132CrossRefGoogle Scholar
  31. Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861CrossRefPubMedGoogle Scholar
  32. Lovejoy DB, Richardson DR (2002) Novel “hybrid” iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells. Blood 100:666–676CrossRefPubMedGoogle Scholar
  33. Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W, Galvin KM, Hoar KM, Huck JJ, LeRoy PJ (2007) Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci 104:4106–4111CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mortlock AA, Foote KM, Heron NM, Jung FH, Pasquet G, Lohmann J-JM, Warin N, Renaud F, De Savi C, Roberts NJ (2007) Discovery, synthesis, and in vivo activity of a new class of pyrazoloquinazolines as selective inhibitors of aurora B kinase. J Med Chem 50:2213–2224CrossRefPubMedGoogle Scholar
  35. Nasr T, Bondock S, Youns M (2014) Anticancer activity of new coumarin substituted hydrazide–hydrazone derivatives. Eur J Med Chem 76:539–548CrossRefPubMedGoogle Scholar
  36. Novinson T, Bhooshan B, Okabe T, Revankar GR, Robins RK, Senga K, Wilson HR (1976) Novel heterocyclic nitrofurfural hydrazones. In vivo antitrypanosomal activity. J Med Chem 19:512–516CrossRefGoogle Scholar
  37. Paula SSP, Yardilyb A, Rajasekharanc K, Reji TAF (2013) Synthesis of anticancer compounds 2-(4-amino-2-arylaminothiazol-5-oyl)-N-methylbenzimidazoles. Indian J Chem 52:560–564Google Scholar
  38. Prien O (2005) Target‐family‐oriented focused libraries for kinases—conceptual design aspects and commercial availability. ChemBioChem 6:500–505CrossRefPubMedGoogle Scholar
  39. Rodrigues T, Reker D, Welin M, Caldera M, Brunner C, Gabernet G, Schneider P, Walse B, Schneider G (2015) De Novo fragment design for drug discovery and chemical biology. Angew Chem Int Ed 54:15079–15083CrossRefGoogle Scholar
  40. Rollas S, Küçükgüzel SG (2007) Biological activities of hydrazone derivatives. Molecules 12:1910–1939CrossRefPubMedGoogle Scholar
  41. Romagnoli R, Baraldi PG, Carrion MD, Cruz-Lopez O, Lopez Cara C, Basso G, Viola G, Khedr M, Balzarini J, Mahboobi S (2009) 2-Arylamino-4-amino-5-aroylthiazoles.“One-pot” synthesis and biological evaluation of a new class of inhibitors of tubulin polymerization. J Med Chem 52:5551–5555CrossRefPubMedPubMedCentralGoogle Scholar
  42. Savini L, Chiasserini L, Travagli V, Pellerano C, Novellino E, Cosentino S, Pisano MB (2004) New α-(N)-heterocyclichydrazones: evaluation of anticancer, anti-HIV and antimicrobial activity. Eur J Med Chem 39:113–122CrossRefPubMedGoogle Scholar
  43. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649–663CrossRefPubMedGoogle Scholar
  44. Schneider G, Schneider P (2016) Coping with complexity in ligand-based de novo design. Frontiers in molecular design and chemical information Science-Herman Skolnik Award Symposium 2015: Jürgen Bajorath. ACS PublicationsGoogle Scholar
  45. Schrödinger (2014) Maestro, version 9.6. LLC, New York, NYGoogle Scholar
  46. Secci D, Bizzarri B, Bolasco A, Carradori S, D’Ascenzio M, Rivanera D, Mari E, Polletta L, Zicari A (2012) Synthesis, anti-Candida activity, and cytotoxicity of new (4-(4-iodophenyl) thiazol-2-yl) hydrazine derivatives. Eur J Med Chem 53:246–253CrossRefPubMedGoogle Scholar
  47. Sengupta S, Smitha SL, Thomas NE, Santhoshkumar TR, Devi SK, Sreejalekshmi KG, Rajasekharan KN (2005) 4‐Amino‐5‐benzoyl‐2‐(4‐methoxyphenylamino) thiazole (DAT1): a cytotoxic agent towards cancer cells and a probe for tubulin‐microtubule system. Br J Pharmacol 145:1076–1083CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sheppard DW, MacRitchie JA (2013) Building in molecular diversity for targeted libraries. Drug Discov Today 10:e461–e466CrossRefGoogle Scholar
  49. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112CrossRefPubMedGoogle Scholar
  50. Song Y, Chen W, Kang D, Zhang Q, Zhan P, Liu X (2014) “Old friends in new guise”: exploiting privileged structures for scaffold re-evolution/refining. Comb Chem High Throughput Screen 17:536–553CrossRefPubMedGoogle Scholar
  51. Sreejalekshmi K (2010) A facile, sequential multicomponent approach to N-aminoamidinothioureas—versatile synthons to bioactive heterocycles. Phosphorus Sulfur Silicon 185:1830–1837CrossRefGoogle Scholar
  52. Tian F-F, Jiang F-L, Han X-L, Xiang C, Ge Y-S, Li J-H, Zhang Y, Li R, Ding X-L, Liu Y (2010) Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods. J Phys Chem B114:14842–14853CrossRefGoogle Scholar
  53. Titus S, Sreejalekshmi KG (2014) One-pot four-component synthesis of 4-hydrazinothiazoles: novel scaffolds for drug discovery. Tetrahedron Lett 55:5465–5467CrossRefGoogle Scholar
  54. Urich R, Wishart G, Kiczun M, Richters A, Tidten-Luksch N, Rauh D, Sherborne B, Wyatt PG, Brenk R (2013) De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments. ACS Chem Biol 8:1044–1052CrossRefPubMedPubMedCentralGoogle Scholar
  55. Verma G, Marella A, Shaquiquzzaman M, Akhtar M, Ali MR, Alam MM (2014) A review exploring biological activities of hydrazones. J Pharm Bioallied Sci 6:69CrossRefPubMedPubMedCentralGoogle Scholar
  56. Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116CrossRefPubMedGoogle Scholar
  57. Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14:347–361CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wilkinson RW, Odedra R, Heaton SP, Wedge SR, Keen NJ, Crafter C, Foster JR, Brady MC, Bigley A, Brown E (2007) AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 13:3682–3688CrossRefPubMedGoogle Scholar
  59. Yan A, Wang L, Xu S, Xu J (2011) Aurora-A kinase inhibitor scaffolds and binding modes. Drug Discov Today 16:260–269CrossRefPubMedGoogle Scholar
  60. Yu X, Shi L, Ke S (2015) Acylhydrazone derivatives as potential anticancer agents: synthesis, bio-evaluation and mechanism of action. Bioorg Med Chem Lett 25:5772–5776CrossRefPubMedGoogle Scholar
  61. Yurttaş L, Özkay Y, Kaplancıklı ZA, Tunalı Y, Karaca H (2013) Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives. J Enzyme Inhib Med Chem 28:830–835CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Space Science and TechnologyThiruvananthapuramIndia

Personalised recommendations