Medicinal Chemistry Research

, Volume 26, Issue 11, pp 2845–2852 | Cite as

Bioguided study of the in vitro parasitocidal effect on adult Hymenolepis nana of the Psidium sartorianum (O. Berg Nied.) fruit methanol extract

  • Julio Montes-Avila
  • Sylvia Páz Díaz-Camacho
  • Kaethe Willms
  • María del Carmen de-la-Cruz-Otero
  • Lilia Robert
  • Ignacio A. Rivero
  • Francisco Delgado-VargasEmail author
Original Research


Intestinal parasites have a high prevalence in many developing countries. In particular, Hymenolepis nana affects primarily children and available treatments are not 100% effective. In Mexico, Psidium sartorianum fruit has been used in traditional medicine to cure intestinal worms. In this paper, the in vitro antiparasitic activity of the methanol extract from P. sartorianum fruit was analyzed by a bioguided strategy and through light and electronic microscopy. Chloroform fraction (CF) of the methanol extract and its sub-fraction (F4-sCF) showed the highest activities; the results for the times of paralysis (5 min) and death (20 min) and the ultrastructural damage were better with F4-sCF than those found using the commercially pure compound Praziquantel. The compound identified in the F4-sCF by nuclear magnetic resonance (1H and 13C nuclear magnetic resonance) and gas-chromatography mass-spectrometry was the 2′,6′-dihidroxy-4′-methoxychalcone (pinostrobin chalcone). Accordingly to the literature, this chalcone may be acting by inhibition of tubulin polymerization and apoptosis induction, but future studies must identify what the molecular targets in H. nana are behind the effect of this chalcone.


Anthelminthic Antiparasitary Hymenolepis nana Psidium sartorianum Chalcone Flavonoid 



The authors acknowledge the financial support provided by Autonomous University of Sinaloa (PROFAPI, “Programa de Fomento y Apoyo a Proyectos de Investigación”) and National Council for Science and Technology of Mexico (CONACyT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Al-Kubaisy W, Al-Talib H, Al-Khateeb A et al. (2014) Intestinal parasitic diarrhea among children in Baghdad-Iraq. Trop Biomed 31:499–506PubMedGoogle Scholar
  2. Aleyasin H, Karuppagounder SS, Kumar A et al. (2015) Antihelminthic benzimidazoles are novel HIF activators that prevent oxidative neuronal death via binding to tubulin. Antioxid Redox Signal 22:121–134CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ankli A, Heinrich M, Bork P et al. (2002) Yucatec Mayan medicinal plants: evaluation based on indigenous uses. J Ethnopharmacol 79:43–52CrossRefPubMedGoogle Scholar
  4. Ávila HP, Albino Smania EDF, Monache FD et al. (2008) Structure–activity relationship of antibacterial chalcones. Bioorg Med Chem 16:9790–9794CrossRefPubMedGoogle Scholar
  5. Camacho-Hernández IL, Cisneros-Rodríguez C, Uribe-Beltrán MDJ et al. (2004) Antifungal activity of fruit pulp extract from Psidium sartorianum. Fitoter 75:401–404CrossRefGoogle Scholar
  6. Chen YH, Wang WH, Wang YH et al. (2013) Evaluation of the anti-inflammatory effect of chalcone and chalcone analogs in a zebrafish model. Molecules 18:2052–2060CrossRefPubMedGoogle Scholar
  7. De Mello TFP, Cardoso BM, Bitencourt HR et al. (2016) Ultrastructural and morphological changes in Leishmania (Viannia) braziliensis treated with synthetic chalcones. Exp Parasitol 160:23–30CrossRefPubMedGoogle Scholar
  8. Delgado-Vargas F, Díaz-Camacho SP, Salazar-Zamora G et al. (2005) Psidium sartorianum (O. Berg) Nied., an indigenous plant to mexico, from biology to biological activity. In: Govil JN, Singh VK, Arunachalam C (ed) Search for natural drugs vol 13, recent progress in medicinal plants, 1st edn. Studium Press LLC, Houston, TX, p 81–114Google Scholar
  9. Domínguez AX (1998) Métodos de Investigación Fitoquímica, 4th edn. Limusa, MexicoGoogle Scholar
  10. Faust EC, D’antoni JS, Odom V et al. (1938) A critical study of clinical laboratory technics for the diagnosis of protozoan cysts and helminth eggs in feces. Am J Trop Med Hyg 18:169–183CrossRefGoogle Scholar
  11. Geerts S, Gryseels B (2001) Anthelmintic resistance in human helminthes: a review. Trop Med Int Health 6:915–921CrossRefPubMedGoogle Scholar
  12. Gupta MP (1995) 270 Plantas medicinales, 1st edn. Santa Fé de Bogota, D.C. Colombia, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Subprograma de Química Fina FarmacéuticaGoogle Scholar
  13. Humphries D, Mosites E, Otchere J et al. (2011) Epidemiology of hookworm infection in Kintampo North municipality, Ghana: patterns of malaria coinfection, anemia, and albendazole treatment failure. Am J Trop Med Hyg 84:792–800CrossRefPubMedPubMedCentralGoogle Scholar
  14. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137aGoogle Scholar
  15. Kundu S, Roy S, Lyndem LM (2012) Cassia alata L: potential role as anthelmintic agent against Hymenolepis diminuta. Parasitol Res 111:1187–1192CrossRefPubMedGoogle Scholar
  16. Lacey E (1988) The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int J Parasitol 18:885–936CrossRefPubMedGoogle Scholar
  17. Lubega GW, Prichard RK (1990) Specific interaction of benzimidazole anthelmintics with tubulin: high-affinity binding and benzimidazole resistance in Haemonchus contortus. Mol Biochem Parasitol 38:221–232CrossRefPubMedGoogle Scholar
  18. Mahapatra DK, Bharti SK, Asati V (2015) Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. Eur J Med Chem 101:496–524CrossRefPubMedGoogle Scholar
  19. Mansur F, Luoga W, Buttle DJ et al. (2014) The anthelmintic efficacy of natural plant cysteine proteinases against two rodent cestodes Hymenolepis diminuta and Hymenolepis microstomain vitro. Vet Parasitol 201:48–58CrossRefPubMedPubMedCentralGoogle Scholar
  20. Matthys B, Bobieva M, Karimova G et al. (2011) Prevalence and risk factors of helminths and intestinal protozoa infections among children from primary schools in western Tajikistan. Parasites Vectors 4:195CrossRefPubMedPubMedCentralGoogle Scholar
  21. Quihui-Cota L, Valencia ME, Crompton DWT et al. (2004) Prevalence and intensity of intestinal parasitic infections in relation to nutricional status in Mexican schoolchildren. Trans R Soc Trop Med Hyg 98:653–659CrossRefPubMedGoogle Scholar
  22. Rafi MM, Rosen RT, Vassil A et al. (2000) Modulation of bcl-2 and cytotoxicity by licochalcone-A, a novel estrogenic flavonoid. Anticancer Res 20:2653–2658PubMedGoogle Scholar
  23. Ritchie LS (1948) An ether sedimentation technique for routine stool examinations. Bull US Army Med Dep 8:326Google Scholar
  24. Rivero-Rodríguez Z, Hernández A, Bracho Á et al. (2013) Prevalencia de microsporidios intestinales y otros enteroparasitos en pacientes VIH positivos de Maracaibo, Venezuela. Bioméd 33:538–545CrossRefGoogle Scholar
  25. Rzedowski J, Rzedowski GC (1985) Flora Fanerogámica del Valle de México: Dicotyledoneae (Euphorbiaceae-Compositae). Compañia Editorial Continental, México, DFGoogle Scholar
  26. Sloss MW, Russel LK, Zajac AM (1994) Faecal examination in the diagnosis of parasitism. In: American-Association-of-Veterinary-Parasitologists (ed) Veterinary clinical parasitology, 6th edn. Lowa State University Press, Lowa, pp 1–80Google Scholar
  27. Wall ME, Wani MC, Brown DM et al. (1996) Effect of tannins on screening of plant extracts for enzyme inhibitory activity and techniques for their removal. Phytomedicine 3:281–285CrossRefPubMedGoogle Scholar
  28. Watkins BM (2003) Drugs for the control of parasitic diseases: current status and development. Trends Parasitol 19:477–478CrossRefPubMedGoogle Scholar
  29. Wei ZF, Jin S, Luo M et al. (2013) Variation in contents of main active components and antioxidant activity in leaves of different pigeon pea cultivars during growth. J Agric Food Chem 61:10002–10009CrossRefPubMedGoogle Scholar
  30. WHO (2003) Prevention and control of parasitic infections. World Health Organization Technical Report SeriesGoogle Scholar
  31. Willms K, Caro JA, Robert L (2003) Ultraestructure of spermatogonia and spermatocyte lobules in Taenia solium strobilae (Cestoda, Cyclophyllidea, Taeniidae) from golden hamsters. Parasitol Res 90:479–488CrossRefPubMedGoogle Scholar
  32. Zhou B, Xing C (2015) Diverse molecular targets for chalcones with varied bioactivities. Med Chem 5:388–404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Julio Montes-Avila
    • 1
    • 2
  • Sylvia Páz Díaz-Camacho
    • 1
    • 2
    • 3
  • Kaethe Willms
    • 4
  • María del Carmen de-la-Cruz-Otero
    • 1
  • Lilia Robert
    • 4
  • Ignacio A. Rivero
    • 5
  • Francisco Delgado-Vargas
    • 3
    • 6
    Email author return OK on get
  1. 1.Faculty of Chemical and Biological Sciences of the Autonomous University of Sinaloa (FCQB-UAS)Ciudad Universitaria s/nCuliacanMexico
  2. 2.Graduate Programs in Biomedical SciencesCiudad Universitaria s/nCuliacanMexico
  3. 3.Graduate Programs in Biotechnology of the FCQB-UASCiudad Universitaria s/nCuliacanMexico
  4. 4.Department of Microbiology and Parasitology, Faculty of MedicineNational Autonomous University of Mexico (UNAM)MexicoMexico
  5. 5.Instituto Tecnológico de TijuanaCentro de Graduados e Investigación en QuímicaTijuanaMexico
  6. 6.Graduate Program in Food Science and Technology of the FCQB-UASCiudad Universitaria s/nCuliacanMexico

Personalised recommendations