On Integrals Over a Convex Set of the Wigner Distribution


We provide an example of a normalized \(L^{2}({\mathbb {R}})\) function u such that its Wigner distribution \({\mathcal {W}}(u,u)\) has an integral \(>1\) on the square \([0,a]\times [0,a]\) for a suitable choice of a. This provides a negative answer to a question raised by Flandrin (Proc IEEE Int Conf Acoustics 4(1):2176–2179, 1988). Our arguments are based upon the study of the Weyl quantization of the characteristic function of \({{\mathbb {R}}_{+}\times {\mathbb {R}}_{+}}\) along with a precise numerical analysis of its discretization.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1


  1. 1.

    On page 2178 of [3], Flandrin writes “it is conjectured that the result (1.1.1) is true for any convex domainC”, a quite mild commitment for the validity of (1.1.1), although that statement was referred to later on as Flandrin’s conjecture in the literature.

  2. 2.

    For \(f\in {\mathscr {S}}({\mathbb {R}}^{N})\), we define its Fourier transform by \( {\hat{f}}(\xi )=\int _{{\mathbb {R}}^{N}} e^{-2i\pi x\cdot \xi } f(x) dx \) and we obtain the inversion formula \( f(x)=\int _{{\mathbb {R}}^{N}} e^{2i\pi x\cdot \xi } {\hat{f}}(\xi ) d\xi \). Both formulas can be extended to tempered distributions.

  3. 3.

    Note that, for \(T_{1}, T_{2}\) distributions on the real line, there is no difficulty at multiplying \(T_{1}(x+y)\) by \(T_{2}(x-y)\): in fact we may define

    $$\begin{aligned} \langle T_{1}(x+y)T_{2}(x-y),\phi (x,y)\rangle _{{\mathscr {D}}'({\mathbb {R}}^{2}),{\mathscr {D}}({\mathbb {R}}^{2})}=\frac{1}{2} \langle T_{1}(x_{1})\otimes T_{2}(x_{2}),\phi \left( \frac{x_{1}+x_{2}}{2},\frac{x_{1}-x_{2}}{2}\right) \rangle _{{\mathscr {D}}'({\mathbb {R}}^{2}),{\mathscr {D}}({\mathbb {R}}^{2})}. \end{aligned}$$

    It is also a general consequence of the location of the wave-front-set of \(T_{1}(x+y)\) (a subset of the conormal bundle of the second diagonal \(x+y=0\)) and of \(T_{2}(x-y)\) (a subset of the conormal bundle of the diagonal \(x-y=0\)): we have

    $$\begin{aligned} \{(x,-x;\xi ,\xi )\in {\mathbb {R}}^{2}\times {\mathbb {R}}^{2} \}\cap \{(x,x;\xi ,-\xi )\in {\mathbb {R}}^{2}\times {\mathbb {R}}^{2} \}=\{(0,0;0,0)\}. \end{aligned}$$
  4. 4.

    For \(t>-1\), we have \(\psi (t)=\int _{0}^{1}\frac{d\theta }{1+\theta t} \) and \(\frac{d}{d t}\{(1+\theta t)^{-1}\}=-(1+\theta t)^{-2} \theta \le 0\).


  1. 1.

    Ascher, U.M., Greif, C.: A First Course on Numerical Methods, vol. 1. SIAM, Philadelphia (2011)

  2. 2.

    Demailly, J.P.: Analyse Numérique et équations Différentielles, 4th edn. EDP Sciences, Les Ulis (2016)

  3. 3.

    Flandrin, P.: Maximum signal energy concentration in a time-frequency domain. Proc. IEEE Int. Conf. Acoust. 4(1), 2176–2179 (1988)

  4. 4.

    Flandrin, P.: Time-Frequency/Time-Scale Analysis, Wavelet Analysis and Its Applications, vol. 10, Academic Press, Inc., San Diego. With a preface by Yves Meyer, Translated from the French by Joachim Stöckler (1999)

  5. 5.

    Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. (CSUR) 23(1), 5–48 (1991)

  6. 6.

    Golub, G., Van Loan, C.: Matrix Computation. C. Johns Hopkins Univ. Press, London (1996)

  7. 7.

    Gröchenig, K.: Foundations of Time–Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (2001)

  8. 8.

    Lerner, N.: Metrics on the Phase Space and Non-selfadjoint Pseudo-Differential Operators, Pseudo-Differential Operators. Theory and Applications, vol. 3. Birkhäuser, Basel (2010)

  9. 9.

    Lieb, E.H., Ostrover, Y.: Localization of multidimensional Wigner distributions. J. Math. Phys. 51(10), 102101–102106 (2010)

  10. 10.

    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press Inc., San Diego (1998)

  11. 11.

    Quarteroni, A., Saleri, F., Gervasio, P.: Scientific Computing with Matlab and Octave. Springer, New York (2014)

  12. 12.

    Tyrrell Rockafellar, R.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)

  13. 13.

    Weyl, H.: Gruppentheorie und Quantenmechanik, 2nd edn. Wissenschaftliche Buchgesellschaft, Darmstadt (1977)

  14. 14.

    Wood, J.G., Bracken, A.J.: Bounds on integrals of the Wigner function: the hyperbolic case. J. Math. Phys. 46(4), 042103–042114 (2005)

Download references

Author information

Correspondence to Nicolas Lerner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Patrick Flandrin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delourme, B., Duyckaerts, T. & Lerner, N. On Integrals Over a Convex Set of the Wigner Distribution. J Fourier Anal Appl 26, 6 (2020).

Download citation


  • Wigner distribution
  • Convexity
  • Weyl quantization

Mathematics Subject Classification

  • 35P05
  • 81S30
  • 81Q10