Journal of Fourier Analysis and Applications

, Volume 25, Issue 6, pp 3259–3309 | Cite as

Atomic and Molecular Decomposition of Homogeneous Spaces of Distributions Associated to Non-negative Self-Adjoint Operators

  • A. G. GeorgiadisEmail author
  • G. Kerkyacharian
  • G. Kyriazis
  • P. Petrushev


We deal with homogeneous Besov and Triebel–Lizorkin spaces in the setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. The class of almost diagonal operators on the associated sequence spaces is developed and it is shown that this class is an algebra. The boundedness of almost diagonal operators is utilized for establishing smooth molecular and atomic decompositions for the above homogeneous Besov and Triebel–Lizorkin spaces. Spectral multipliers for these spaces are established as well.


Algebra Almost diagonal operators Atomic decomposition Besov spaces Frames Heat kernel Homogeneous spaces Molecular decomposition Spectral multipliers Triebel–Lizorkin spaces 

Mathematics Subject Classification

Primary 58J35 46E35 43A85 Secondary 42B25 42B15 42C15 42C40 



  1. 1.
    Barlow, M.T., Grigor’yan, A., Kumagai, T.: On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Jpn. 64, 1091–1146 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bownik, M., Ho, K.: Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Am. Math. Soc. 358(4), 1469–1510 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bui, H.Q., Duong, X.T., Yan, L.: Calderón reproducing formulas and new Besov spaces associated with operators. Adv. Math. 229, 2449–2502 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bui, T.A., Duong, X.T., Li, J.: VMO spaces associated with operators with Gaussian upper bounds on product domains. J. Geom. Anal. 27(2), 1065–1085 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Christ, M.: A \(T(b)\) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60(61), 601–628 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Christensen, J.G., Grochenig, K., Olafsson, G.: New atomic decompositions for Bergman spaces on the unit ball. Indiana Univ. Math. J. 66(1), 205–235 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coifman, R., Weiss, G.: Analyse Harmonique Non-commutative Sur Certains Espaces Homogeneous, Lecture Notes in Math, vol. 242. Springer, Berlin (1971)CrossRefGoogle Scholar
  8. 8.
    Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Coulhon, T., Kerkyacharian, G., Petrushev, P.: Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl. 18(5), 995–1066 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dekel, S., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Compactly supported frames for spaces of distributions associated with non-negative self-adjoint operators. Stud. Math. 225(2), 115–163 (2014)CrossRefGoogle Scholar
  11. 11.
    Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Duong, X.T., Yan, L.: New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math. 58, 1375–1420 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Feichtinger, H.G., Fuhr, H., Pesenson, I.Z.: Geometric space frequency analysis on manifolds. J. Fourier Anal. Appl. 22, 1294–1355 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution. J. Funct. Anal. 93, 34–170 (1990)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley Theory and the Study of Function Spaces, CBMS vol. 79. AMS (1991)Google Scholar
  17. 17.
    Geller, D., Pesenson, I.: Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds. J. Geom. Anal. 21, 334–371 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Georgiadis, A.G., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Homogeneous Besov and Triebel-Lizorkin spaces associated to non-negative self-adjoint operators. J. Math. Anal. Appl. 449(2), 1382–1412 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Grafakos, L., Torres, R.H.: Pseudodifferential operators with homogeneous symbols. Michigan Math. J. 46(2), 261–269 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Grigor’yan, A.: Heat kernels and function theory on metric measure spaces. Contemp. Math. 338, 143–172 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Grigor’yan, A., Telcs, A.: Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40, 1212–1284 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Han, Y., Müller, D., Yang, D.: Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 214(1007), vi+78 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Am. Math. Soc. 367, 121–189 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liguang, L., Yang, D., Yuan, W.: Besov-type and Triebel-Lizorkin-type spaces associated with heat kernels. Collect. Math. 67(2), 247–310 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Peetre, J.: New Thoughts on Besov spaces. Duke Univ. Math. Series, Durham, NC (1976)zbMATHGoogle Scholar
  27. 27.
    Pesenson, I.: The best approximation in a representation space of a Lie group. Dokl. Acad. Nauk USSR 302/5, 1055–1059 (1988). (Engl. Transl. in Soviet Math. Dokl. 38/2 (1989), 384–388)Google Scholar
  28. 28.
    Pesenson, I.: Sampling of Paley-Wiener functions on stratified groups. J. Four. Anal. Appl. 4, 269–280 (1998)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pesenson, I.: A sampling theorem on homogeneous manifolds. Trans. Am. Math. Soc. 352(9), 4257–4269 (2000)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Reed, M., Simon, B.: Methods of Mathematical Physics, vol. 1. Academic Press, New York (1975)zbMATHGoogle Scholar
  31. 31.
    Skrzypczak, L.: Atomic decompositions on manifolds with bounded geometry. Forum Math. 10(1), 19–38 (1998)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ (1993)zbMATHGoogle Scholar
  33. 33.
    Torres, R.H.: Boundedness results for operators with singular kernels on distribution spaces. Mem. Am. Math. Soc. 90(442), viii+172 (1991)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Triebel, H.: Theory of Function Spaces, Monogr. Math., vol. 78. Birkhäuser, Basel (1983)CrossRefGoogle Scholar
  35. 35.
    Triebel, H.: Theory of Function Spaces II, Monogr. Math., vol. 84. Birkhäuser, Basel (1992)CrossRefGoogle Scholar
  36. 36.
    Yang, D., Yuan, W.: A new class of function spaces connecting Triebel-Lizorkin spaces and \(Q\) spaces. J. Funct. Anal. 255, 2760–2809 (2008)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Yang, D., Zhou, Y.: New properties of Besov and Triebel-Lizorkin spaces on RD-spaces. Manuscripta Math. 134, 59–90 (2011)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. G. Georgiadis
    • 1
    Email author
  • G. Kerkyacharian
    • 2
    • 3
  • G. Kyriazis
    • 1
  • P. Petrushev
    • 4
  1. 1.Department of Mathematics and StatisticsUniversity of CyprusNicosiaCyprus
  2. 2.Laboratoire de Probabilités et Modèles Aléatoires, CNRS-UMR 7599ParisFrance
  3. 3.CrestMalakoffFrance
  4. 4.Department of MathematicsUniversity of South CarolinaColumbiaUSA

Personalised recommendations