Advertisement

Journal of Fourier Analysis and Applications

, Volume 25, Issue 6, pp 3154–3173 | Cite as

Frame Phase-Retrievability and Exact Phase-Retrievable Frames

  • Deguang HanEmail author
  • Ted Juste
  • Youfa Li
  • Wenchang Sun
Article
  • 64 Downloads

Abstract

A phase-retrievable frame \(\{f_{i}\}_{i}^{N}\) for an n-dimensional Hilbert space is exact if it fails to be phase-retrievable when removing any element from the frame sequence. Unlike exact frames, exact phase-retrievable frames could have different lengths. We shall prove that for the real Hilbert space case, exact phase-retrievable frame of length N exists for every \(2n-1\le N\le n(n+1)/2\). For arbitrary frames we introduce the concept of redundancy with respect to its phase-retrievability and the concept of frames with exact PR-redundancy. We investigate the phase-retrievability by studying its maximal phase-retrievable subspaces with respect to a given frame which is not necessarily phase-retrievable. These maximal PR-subspaces could have different dimensions. We are able to identify the one with the largest dimension, which can be considered as a generalization of the characterization for phase-retrievable frames. In the basis case, we prove that if M is a k-dimensional PR-subspace, then \(|supp(x)| \ge k\) for every nonzero vector \(x\in M\). Moreover, if \(1\le k< [(n+1)/2]\), then a k-dimensional PR-subspace is maximal if and only if there exists a vector \(x\in M\) such that \(|supp(x) | = k\).

Keywords

Frames Phase retrieval Exact phase-retrievable frames PR-redundancy Phase-retrievable subspaces 

Mathematics Subject Classification

Primary 42C15 46C05 

Notes

Acknowledgements

The authors thank the referee very much for carefully reading the paper and for several valuable comments and suggestions. D. Han acknowledges the support from NSF under the Grant DMS-1712602. Y. Li is partially supported by the National Natural Science Foundation of China (Nos. 61561006, 11501132), the Natural Science Foundation of Guangxi (No. 2016GXNSFAA380049) and the talent project of Education Department of Guangxi Government for Young-Middle-Aged backbone teachers. W. Sun acknowledges the support from the National Natural Science Foundation of China (Nos. 11525104 and 11531013).

References

  1. 1.
    Balan, R.: Stability of phase retrievable frames. Proc. SPIE, Wavelets and Sparsity XV, 88580H (2013)Google Scholar
  2. 2.
    Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20, 345–356 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Balan, R., Casazza, P.G., Edidin, D.: On signal reconstruction from the absolute value of the frame coefficients. Proc. SPIE 5914(1–8), 591415 (2005)CrossRefGoogle Scholar
  4. 4.
    Balan, R., Casazza, P.G., Edidin, D.: Equivalence of reconstruction from the absolute value of the frame coefficients to a sparse representation problem. IEEE Signal Process. Lett 14, 341–343 (2007)CrossRefGoogle Scholar
  5. 5.
    Balan, B., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame vectors. J. Fourier Anal. Appl. 15, 488–501 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Fast Algorithms for Signal Reconstruction without Phase. Proceedings of SPIE-Wavelets XII, San Diego, vol.6701, 670111920–670111932 (2007)Google Scholar
  7. 7.
    Balan, R., Zou, D.: On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem. Linear Algebra Appl. 496, 152–181 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Balan, R., Wang, Y.: Invertibility and robustness of phaseless reconstruction. Appl. Comput. Harmon. Aanl. 38, 469–488 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase retrieval. Appl. Comput. Harmon. Anal. 37, 106–125 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bandeira, A.S., Chen, Y., Mixon, D.G.: Phase retrieval from power spectra of masked signals. Inf. Inference 3, 83–102 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bendory, T., Eldar, Y.C.: A least squares approach for stable phase retrieval from short-time Fourier transform magnitude. (2015). preprint, arXiv:1510.00920
  12. 12.
    Bodmann, B.G., Hammen, N.: Stable phase retrieval with low-redundancy frames. Adv. Comput. Math. 41, 317–331 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bodmann, B.G., Casazza, P.G., Edidin, D., Balan, R.: Frames for Linear Reconstruction without Phase. CISS Meeting, Princeton, NJ (2008)Google Scholar
  14. 14.
    Bojarovska, I., Flinth, A.: Phase retrieval from Gabor measurements. J. Fourier Anal. Appl. 22, 542–567 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6, 199–225 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Candès, E.J., Strohmer, T., Voroninski, V.: PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Candès, E.J., Li, X.: Solving quadratic equations via PhaseLift when there are about as many equations as unknowns. Found. Comput. Math. 14, 1017–1026 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Eldar, Y.C., Hammen, N., Mixon, D.: Recent Advances in Phase Retrieval. In: IEEE Signal Processing Magazine, pp. 158–162 (2016)Google Scholar
  19. 19.
    Eldar, Y.C., Sidorenko, P., Mixon, D.G., Barel, S., Cohen, O.: Sparse phase retrieval from short-time Fourier measurements. IEEE Signal Process. Lett. 22, 638–642 (2015)CrossRefGoogle Scholar
  20. 20.
    Fickus, M., Mixon, D.G., Nelson, A.A., Wang, Y.: Phase retrieval from very few measurements. Linear Algebra Appl. 449, 475–499 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jaganathan, K., Eldar, Y.C., Hassibi, B.: Phase retrieval: an overview of developments, Chapter 13. In: Stern, A. (ed.) Optical Compressive Imaging. CRC Press, Boca Raton (2016)Google Scholar
  22. 22.
    Li, L., Cheng, C., Han, D., Sun, Q., Shi, G.: Phase retrieval from multiple-window Short-Time Fourier measurements. IEEE Signal Process. Lett. 24, 372–376 (2017)CrossRefGoogle Scholar
  23. 23.
    Nawab, S.H., Quatieri, T.F., Lim, J.S.: Signal reconstruction from short-time Fourier transform magnitude. IEEE Trans. Acoust. Speech Signal Process. 31, 986–998 (1983)CrossRefGoogle Scholar
  24. 24.
    Wang, Y., Xu, Z.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. 37, 531–544 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Deguang Han
    • 1
    Email author
  • Ted Juste
    • 1
  • Youfa Li
    • 2
  • Wenchang Sun
    • 3
  1. 1.Department of MathematicsUniversity of Central FloridaOrlandoUSA
  2. 2.College of Mathematics and Information ScienceGuangxi UniversityNaningChina
  3. 3.School of Mathematical Sciences and LPMCNankai UniversityTianjinChina

Personalised recommendations