Distribution Frames and Bases

  • Camillo Trapani
  • Salvatore Triolo
  • Francesco TschinkeEmail author


In this paper we will consider, in the abstract setting of rigged Hilbert spaces, distribution valued functions and we will investigate conditions for them to constitute a ”continuous basis” for the smallest space \(\mathcal D\) of a rigged Hilbert space. This analysis requires suitable extensions of familiar notions as those of frames, Riesz bases and orthonormal bases. A motivation for this study comes from the Gel’fand–Maurin theorem which states, under certain conditions, the existence of a family of generalized eigenvectors of an essentially self-adjoint operator on a domain \(\mathcal D\) which acts like an orthonormal basis of the Hilbert space \(\mathcal H\). The corresponding object will be called here a Gel’fand distribution basis. The main results are obtained in terms of properties of a conveniently defined synthesis operator.


Distributions Rigged Hilbert spaces Frames Bases 

Mathematics Subject Classification

Primary 47A70 Secondary 42C15 42C30 



The authors thank the referees for their useful comments and suggestions. This paper has been made within the framework of the Project INdAM-GNAMPA 2018 Alcuni aspetti di teoria spettrale di operatori e di algebre; frames in spazi di Hilbert rigged.


  1. 1.
    Ali, S.T., Antoine, J.P., Gazeau, J.P.: Continuous frames in Hilbert spaces. Ann. Phys. 222, 1–37 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ali, S.T., Antoine, J.P., Gazeau, J.P.: Coherent States, Wavelet and Their Generalizations, 2nd edn. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  3. 3.
    Antoine, J.-P., Trapani, C.: Partial Inner Product Spaces, Theory and Applications. Lecture Notes in Mathematics 1986. Springer, Berlin (2009)zbMATHGoogle Scholar
  4. 4.
    Antoine, J.-P., Trapani, C.: Reproducing pairs of measurable functions and partial inner product spaces. Adv. Oper. Theory 2, 126–146 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Antoine, J.-P., Inoue, A., Trapani, C.: Partial *-algebras and their operator realizations. Kluwer, Dordrecht (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Antoine, J.-P., Speckbacher, M., Trapani, C.: Reproducing pairs of measurable functions. Acta Appl. Math. 150, 81101 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bagarello, F., Inoue, A., Trapani, C.: Non-self-adjoint Hamiltonians defined by Riesz bases. J. Math. Phys. 55, 033501 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bagarello, F., Gazeau, J.P., Szafraniec, F.H., Znojil, M. (eds.): Non-selfadjoint Operators in Quantum Physics: Mathematical Aspects. Wiley, New York (2015)zbMATHGoogle Scholar
  9. 9.
    Bagarello, F., Passante, R., Trapani, C. (eds.): Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol. 184. Springer, New York (2016)Google Scholar
  10. 10.
    Balazs, P., Bayer, D., Rahimi, A.: Multipliers for continuous frames in Hilbert spaces. J. Phys. A 45, 244023 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bellomonte, G., Trapani, C.: Riesz-like bases in rigged Hilbert spaces. Z. Anal. Anwen. 35, 243–265 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Christensen, O.: Frames and Bases—An Introductory Course. Birkhäuser, Boston (2008)zbMATHGoogle Scholar
  13. 13.
    Davies, E.B.: Spectral Theory and Differential Operators. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  14. 14.
    Feichtinger, H.G., Gröchenig, K.: Gabor frames and time-frequency analysis of distributions. J. Funct. Anal. 146, 464–495 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Feichtinger, H.G., Werther, T.: Atomic systems for subspaces. In: Zayed, L. (ed.) Proceedings SampTA 2001, Orlando, FL, pp. 163–165 (2001)Google Scholar
  16. 16.
    Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms—Theory and Applications. Birkhäuser, Boston (1998)Google Scholar
  17. 17.
    Gǎvrutţa, L.: Frames and operators. Appl. Comput. Harmon. Anal. 32, 139–144 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gel’fand, I.M., Vilenkin, N.Ya.: Generalized Functions, vol. 4. Academic Press, New York (1964)zbMATHGoogle Scholar
  19. 19.
    Gel’fand, I.M., Shilov, G.E., Saletan, E.: Generalized Functions, vol. 3. Academic Press, New York (1967)Google Scholar
  20. 20.
    Gould, G.G.: The spectral representation of normal operators on a rigged Hilbert space. J. Lond. Math. Soc. s1–43, 745–754 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hosseini Giv, H., Radjabalipour, M.: On the structure and properties of lower bounded analytic frames. Iran. J. Sci. Technol. 37A3, 227–230 (2013)MathSciNetGoogle Scholar
  22. 22.
    Jakobsen, M.S., Lemvig, J.: Density and duality theorems for regular Gabor frames. J. Funct. Anal. 270, 229–263 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kaiser, G.: A Friendly Guide to Wavelets. Birkhäuser, Boston (1994)zbMATHGoogle Scholar
  24. 24.
    Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kyriazis, G., Petrushev, P.: On the construction of frames for spaces of distributions. J. Funct. Anal. 257, 21592187 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Li, S., Ogawa, H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10, 409–431 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Messiah, A.: Quantum Mechanics, vol. I. North Holland, Amsterdam (1967)zbMATHGoogle Scholar
  28. 28.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vols. 1, 2. Academic Press, New York (1980)Google Scholar
  29. 29.
    Rudin, W.: Real and Complex analysis. McGraw-Hill, New York (1987)zbMATHGoogle Scholar
  30. 30.
    Speckbacher, M., Balazs, P.: Reproducing pairs and the continuous nonstationary Gabor transform on LCA groups. J. Phys. A 48, 395201 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Speckbacher, M., Balazs, P.: Reproducing pairs and Gabor systems at critical density. J. Math. Anal. Appl. 455, 1072–1087 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Speckbacher, M., Balasz, P.: Frames, their relatives and reproducing kernel Hilbert spaces. arXiv:1704.02818 (2017)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Camillo Trapani
    • 1
  • Salvatore Triolo
    • 2
  • Francesco Tschinke
    • 1
    Email author
  1. 1.Dipartimento di Matematica e InformaticaUniversità di PalermoPalermoItaly
  2. 2.Dipartimento DEIMUniversità di PalermoPalermoItaly

Personalised recommendations