Advertisement

Local variation in recombination rates of the honey bee (Apis mellifera) genome among samples from six disparate populations

  • T. DeLory
  • K. Funderburk
  • K. Miller
  • W. Zuluaga-Smith
  • S. McPherson
  • C. W. Pirk
  • C. Costa
  • É. Weinstein-Teixeira
  • B. Dahle
  • O. RueppellEmail author
Research Article

Abstract

Meiotic recombination is an essential component of eukaryotic sexual reproduction, but its frequency varies within and between genomes. Although it is well established that honey bees have a high recombination rate with about 20 cM/Mbp, the proximate and ultimate causes of this exceptional rate are poorly understood. Here, we describe six linkage maps of the western honey bee Apis mellifera that were produced with consistent methodology from samples from distinct parts of the species near global distribution. We compared the genome-wide rates and distribution of meiotic crossovers among the six maps and found considerable differences. Overall similarity of local recombination rates among our samples was unrelated to geographic or phylogenetic distance of the populations that our samples were derived from. However, the limited sampling constrains the interpretation of our results, because it is unclear how representative these samples were. In contrast to previous studies, we found only in two datasets a significant relation between local recombination rate and GC content. Focusing on regions of particularly increased or decreased recombination in specific maps, we identified several enriched gene ontologies in these regions and speculated about their local adaptive relevance. These data are contributing to an increasing comparative effort to gain an understanding of the intra-specific variability of recombination rates and their evolutionary role in honey bees and other social insects.

Keywords

Genome evolution Genetic diversity Meiotic recombination Intra-specific variability Crossover 

Notes

Acknowledgements

We would like to thank all instructors and fellow students of the Math-Bio REU-site at UNCG for their support and collegial working atmosphere. We appreciate the opportunity to sample “Russian” colonies from Steven Coy (then President of the Russian Honey Bee Breeders) in Perkinston, Mississippi. We would like to thank Sharon Furiness and the Genomics Core Lab at TAMU Corpus Christi for performing the ddRAD library preparation, SE sequencing, and SNP extraction. Esmaeil Amiri assisted in the data management. We would also like to thank three anonymous reviewers whose comments on a previous version of this manuscript helped us to improve the presentation of our study. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R15GM102753. Further financial support was provided by the US National Science Foundation (DMS #1359187) and UNCG.

Supplementary material

40_2019_736_MOESM1_ESM.xlsx (1.8 mb)
Supplementary material 1 (XLSX 1875 kb)
40_2019_736_MOESM2_ESM.pdf (1.1 mb)
Supplementary material 2 (PDF 1079 kb)

References

  1. Alleman A, Feldmeyer B, Foitzik S (2018) Comparative analyses of co-evolving host-parasite associations reveal unique gene expression patterns underlying slavemaker raiding and host defensive phenotypes. Sci Rep 8:1951PubMedPubMedCentralCrossRefGoogle Scholar
  2. Amdam GV, Norberg K, Omholt SW, Kryger P, Lourenco AP, Bitondi MMG, Simoes ZLP (2005) Higher vitellogenin concentrations in honey bee workers may be an adaptation to life in temperate climates. Insectes Soc 52:316–319CrossRefGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300Google Scholar
  4. Bessoltane N, Toffano-Nioche C, Solignac M, Mougel F (2012) Fine scale analysis of crossover and non-crossover and detection of recombination sequence motifs in the honeybee (Apis mellifera). PLoS One 7:e36229PubMedPubMedCentralCrossRefGoogle Scholar
  5. Beye M et al (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res 16:1339–1344PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bourgeois AL, Rinderer TE (2009) Genetic characterization of Russian Honey Bee stock selected for improved resistance to Varroa destructor. J Econ Entomol 102:1233–1238PubMedCrossRefGoogle Scholar
  7. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140PubMedPubMedCentralCrossRefGoogle Scholar
  8. Charlesworth B, Charlesworth D (1985) Genetic variation in recombination. I. Responses to selection and preliminary genetic analysis. Heredity 54:71–83CrossRefGoogle Scholar
  9. Comeron JM, Ratnappan R, Bailin S (2012) The many landscapes of recombination in Drosophila melanogaster. PLoS Genet 8:e1002905PubMedPubMedCentralCrossRefGoogle Scholar
  10. Conlon B, Frey E, Rosenkranz P, Locke B, Moritz R, Routtu J (2018) The role of epistatic interactions underpinning resistance to parasitic Varroa mites in haploid honeybee drones. J Evol Biol 31:801–809PubMedCrossRefGoogle Scholar
  11. Coop G, Wen XQ, Ober C, Pritchard JK, Przeworski M (2008) High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319:1395–1398PubMedCrossRefGoogle Scholar
  12. Cvetković D, Tucić N (1986) Female recombination rates and fitness in Drosophila melanogaster. J Zool Syst Evol Res 24:198–207CrossRefGoogle Scholar
  13. De Villena FP-M, Sapienza C (2001) Recombination is proportional to the number of chromosome arms in mammals. Mamm Genome 12:318–322CrossRefGoogle Scholar
  14. Dumont BL, White MA, Steffy B, Wiltshire T, Payseur BA (2011) Extensive recombination rate variation in the house mouse species complex inferred from genetic linkage maps. Genome Res 21:114–125PubMedPubMedCentralCrossRefGoogle Scholar
  15. Elsik C et al (2014) Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genom 15:86CrossRefGoogle Scholar
  16. Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen DE (2015) Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic Acids Res 44:D793–D800PubMedPubMedCentralCrossRefGoogle Scholar
  17. Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533PubMedCrossRefGoogle Scholar
  18. Fledel-Alon A, Wilson DJ, Broman K, Wen X, Ober C, Coop G, Przeworski M (2009) Broad-scale recombination patterns underlying proper disjunction in humans. PLoS Genet 5:e1000658PubMedPubMedCentralCrossRefGoogle Scholar
  19. Harpur BA, Minaei S, Kent CF, Zayed A (2012) Management increases genetic diversity of honey bees via admixture. Mol Ecol 21:4414–4421PubMedCrossRefGoogle Scholar
  20. Harpur BA, Kent CF, Molodtsova D, Lebon JM, Alqarni AS, Owayss AA, Zayed A (2014) Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proc Natl Acad Sci 111:2614–2619PubMedCrossRefGoogle Scholar
  21. Hartfield M, Keightley PD (2012) Current hypotheses for the evolution of sex and recombination. Integr Zool 7:192–209PubMedCrossRefGoogle Scholar
  22. Hasegawa M et al (2009) Differential gene expression in the mandibular glands of queen and worker honeybees, Apis mellifera L.: implications for caste-selective aldehyde and fatty acid metabolism. Insect Biochem Mol 39:661–667CrossRefGoogle Scholar
  23. Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8:269–294PubMedCrossRefGoogle Scholar
  24. Hillers KJ (2004) Crossover interference. Curr Biol 14:R1036–R1037PubMedCrossRefGoogle Scholar
  25. Huang W et al (2014) Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res 24:1193–1208PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hunt GJ, Page RE (1995) Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics 139:1371–1382PubMedPubMedCentralGoogle Scholar
  27. Hunter CM, Huang W, Mackay TF, Singh ND (2016) The genetic architecture of natural variation in recombination rate in Drosophila melanogaster. PLoS Genet 12:e1005951PubMedPubMedCentralCrossRefGoogle Scholar
  28. Johnston SE, Bérénos C, Slate J, Pemberton JM (2016) Conserved genetic architecture underlying individual recombination rate variation in a wild population of Soay sheep (Ovis aries). Genetics 203:583–598PubMedPubMedCentralCrossRefGoogle Scholar
  29. Jones JC, Wallberg A, Christmas MJ, Kapheim KM, Webster MT (2019) Extreme differences in recombination rate between the genomes of a solitary and a social bee. Mol Biol Evol 36:2277–2291PubMedGoogle Scholar
  30. Kapheim KM et al (2015) Genomic signatures of evolutionary transitions from solitary to group living. Science 348:1139–1143PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kavanagh K, Jörnvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families. Cell Mol Life Sci 65:3895PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kawakami T, Wallberg A, Olsson A, Wintermantel D, de Miranda JR, Allsopp M, Rundlӧf M, Webster MT (2019) Substantial heritable variation in recombination rate on multiple scales in honeybees and bumblebees. Genetics 212:1101–1119PubMedCrossRefGoogle Scholar
  33. Kent CF, Zayed A (2013) Evolution of recombination and genome structure in eusocial insects. Commun Integr Biol 6:e22919PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kent CF, Minaei S, Harpur BA, Zayed A (2012) Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc Natl Acad Sci USA 109:18012–18017PubMedCrossRefGoogle Scholar
  35. Kocher SD et al (2013) The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes. Genome Biol 14:R142PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kohl KP, Sekelsky J (2013) Meiotic and mitotic recombination in meiosis. Genetics 194:327–334PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kong A et al (2004) Recombination rate and reproductive success in humans. Nat Genet 36:1203PubMedCrossRefGoogle Scholar
  38. Langberg K, Phillips M, Rueppell O (2018) Testing the effect of paraquat exposure on genomic recombination rates in queens of the western honey bee, Apis mellifera. Genetica 146:171–178PubMedCrossRefGoogle Scholar
  39. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedPubMedCentralCrossRefGoogle Scholar
  40. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391PubMedCrossRefGoogle Scholar
  41. Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR (2016) Evolutionary mysteries in meiosis. Philos Trans R Soc B 371:20160001CrossRefGoogle Scholar
  42. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760PubMedPubMedCentralCrossRefGoogle Scholar
  43. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMedPubMedCentralCrossRefGoogle Scholar
  44. Liu H, Zhang X, Huang J, Chen J-Q, Tian D, Hurst L, Yang S (2015) Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee. Genome Biol 16:15PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652PubMedCrossRefGoogle Scholar
  46. Lynch M (2006) The origins of eukaryotic gene structure. Mol Biol Evol 23:450–468PubMedCrossRefGoogle Scholar
  47. Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364PubMedCrossRefGoogle Scholar
  48. Meixner MD, Costa C, Kryger P, Hatjina F, Bouga M, Ivanova E, Büchler R (2010) Conserving diversity and vitality for honey bee breeding. J Apic Res 49:85–92CrossRefGoogle Scholar
  49. Meixner MD, Büchler R, Costa C, Francis RM, Hatjina F, Kryger P, Uzunov A, Carreck NL (2014) Honey bee genotypes and the environment. J Apic Res 53:183–187CrossRefGoogle Scholar
  50. Mougel F, Poursat M-A, Beaume N, Vautrin D, Solignac M (2014) High-resolution linkage map for two honeybee chromosomes: the hotspot quest. Mol Genet Genom 289:11–24CrossRefGoogle Scholar
  51. Mugal CF, Weber CC, Ellegren H (2015) GC-biased gene conversion links the recombination landscape and demography to genomic base composition: GC-biased gene conversion drives genomic base composition across a wide range of species. BioEssays 37:1317–1326PubMedCrossRefGoogle Scholar
  52. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324PubMedCrossRefGoogle Scholar
  53. Otto SP, Barton NH (2001) Selection for recombination in small populations. Evolution 55:1921–1931PubMedCrossRefGoogle Scholar
  54. Pearson P, Ellis J, Evans H (1970) A gross reduction in chiasma formation during meiotic prophase and a defective DNA repair mechanism associated with a case of human male infertility. Cytogenet Genome Res 9:460–467CrossRefGoogle Scholar
  55. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135PubMedPubMedCentralCrossRefGoogle Scholar
  56. Pinto MA et al (2014) Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data. J Apic Res 53:269–278CrossRefGoogle Scholar
  57. Reich DE et al (2002) Human genome sequence variation and the influence of gene history, mutation and recombination. Nat Genet 32:135PubMedCrossRefGoogle Scholar
  58. Ritz KR, Noor MA, Singh ND (2017) Variation in recombination rate: adaptive or not? Trends Genet 33:364–374PubMedCrossRefGoogle Scholar
  59. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ross C, DeFelice D, Hunt G, Ihle K, Rueppell O (2015a) A comparison of multiple genome-wide recombination maps in Apis mellifera. Collaborative mathematics and statistics research. Springer, Berlin, pp 91–98Google Scholar
  61. Ross CR, DeFelice DS, Hunt GJ, Ihle KE, Amdam GV, Rueppell O (2015b) Genomic correlates of recombination rate and its variability across eight recombination maps in the western honey bee (Apis mellifera L.). BMC Genom 16:107CrossRefGoogle Scholar
  62. Ross L, Blackmon H, Lorite P, Gokhman V, Hardy N (2015c) Recombination, chromosome number and eusociality in the Hymenoptera. J Evol Biol 28:105–116PubMedPubMedCentralCrossRefGoogle Scholar
  63. Rueppell O, Meier S, Deutsch R (2012) Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures. PLoS One 7:e47220PubMedPubMedCentralCrossRefGoogle Scholar
  64. Rueppell O et al (2016) A new metazoan recombination rate record and consistently high recombination rates in the honey bee genus Apis accompanied by frequent inversions but not translocations. Genome Biol Evol 8:3653–3660PubMedPubMedCentralGoogle Scholar
  65. Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, BerlinCrossRefGoogle Scholar
  66. Schneider SS, DeGrandi-Hoffman G, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376CrossRefGoogle Scholar
  67. Shi YY, Sun LX, Huang ZY, Wu XB, Zhu YQ, Zheng HJ, Zeng ZJ (2013) A SNP based high-density linkage map of Apis cerana reveals a high recombination rate similar to Apis mellifera. PLoS One 8:e76459PubMedPubMedCentralCrossRefGoogle Scholar
  68. Sirviö A, Gadau J, Rueppell O, Lamatsch D, Boomsma JJ, Pamilo P, Page RE (2006) High recombination frequency creates genotypic diversity in colonies of the leaf-cutting ant Acromyrmex echinatior. J Evol Biol 19:1475–1485PubMedCrossRefGoogle Scholar
  69. Sirviö A, Johnston JS, Wenseleers T, Pamilo P (2011) A high recombination rate in eusocial Hymenoptera: evidence from the common wasp Vespula vulgaris. BMC Genet 12:95PubMedPubMedCentralCrossRefGoogle Scholar
  70. Smukowski CS, Noor MAF (2011) Recombination rate variation in closely related species. Heredity 107:496–508PubMedPubMedCentralCrossRefGoogle Scholar
  71. Solignac M, Mougel F, Vautrin D, Monnerot M, Cornuet JM (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol 8:R66PubMedPubMedCentralCrossRefGoogle Scholar
  72. Southwick EE, Heldmaier G (1987) Temperature control in honey bee colonies. Bioscience 37:395–399CrossRefGoogle Scholar
  73. Stapley J, Feulner PG, Johnston SE, Santure AW, Smadja CM (2017) Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc B 372:20160455CrossRefGoogle Scholar
  74. Stevison LS, Sefick S, Rushton C, Graze RM (2017) Recombination rate plasticity: revealing mechanisms by design. Philos Trans R Soc B 372:20160459CrossRefGoogle Scholar
  75. Tarpy DR, Seeley TD (2006) Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93:195–199PubMedCrossRefGoogle Scholar
  76. Tundo GR et al (2017) Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Crit Rev Biochem Mol Biol 52:554–582PubMedCrossRefGoogle Scholar
  77. Ubeda F, Wilkins JF (2011) The Red Queen theory of recombination hotspots. J Evol Biol 24:541–553PubMedCrossRefGoogle Scholar
  78. Van Oers K et al (2014) Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates. Heredity 112:307PubMedCrossRefGoogle Scholar
  79. Wallberg A et al (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46:1081–1090PubMedCrossRefGoogle Scholar
  80. Wallberg A, Glémin S, Webster MT (2015) Extreme recombination frequencies shape genome variation and evolution in the Honeybee, Apis mellifera. PLoS Genet 11:e1005189PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wallberg A et al (2019) A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genom 20:275CrossRefGoogle Scholar
  82. Wilfert L, Gadau J, Schmid-Hempel P (2007) Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98:189–197PubMedCrossRefGoogle Scholar
  83. Williams CG, Goodman MM, Stuber CW (1995) Comparative recombination distances among Zea mays L. inbreds, wide crosses and interspecific hybrids. Genetics 141:1573–1581PubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of North Carolina at GreensboroGreensboroUSA
  2. 2.Department of BiologyUtah State UniversityLoganUSA
  3. 3.Applied Mathematics for the Life and Social Sciences, College of Liberal Arts and SciencesArizona State UniversityTempeUSA
  4. 4.Department of Entomology and Plant PathologyNCSURaleighUSA
  5. 5.Social Insects Research Group, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  6. 6.Consiglio per la Ricerca in Agricolturae l’Analisi dell’Economia AgrariaRomeItaly
  7. 7.Honey Bee Health Specialized Laboratory, Biological InstituteSão Paulo State Agribusiness Technology AgencyPindamonhangabaBrazil
  8. 8.Norwegian Beekeepers AssociationKløftaNorway
  9. 9.Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway

Personalised recommendations