Insectes Sociaux

, Volume 66, Issue 4, pp 569–580 | Cite as

Social structure of Gnamptogenys bisulca (Formicidae: Ectatomminae) in tropical forests

  • D. M. Urcuqui
  • J. Herrera-Rangel
  • C. Poteaux
  • I. ArmbrechtEmail author
Research Article


The study of the social organization of ants may help to understand why some species are able to persist in natural forests after fragmentation and anthropogenic disturbances. The Neotropical ant Gnamptogenys bisulca has shown to be a biological indicator of habitat quality in Andean montane forests and we proposed to explain this characteristic by investigating its social structure and the spatial distribution of colonies at fine scale. In eight 100 m2 plots located in four forests in the western Colombian Andes, the position of G. bisulca colonies was recorded for spatial distribution and their social composition described: ergatoid females were found in most of the nests, isolated or together with normal queens. As ergatoids and queens were dissected to examine their reproductive status, it appeared that apparent polygyny represented, in fact, effective monogyny, with other potential reproductive females being unmated or inhibited. In the few cases of mixed colonies, a queen was always at the head of the colony. Local spatial distribution was random and did not fit the hypothesis of nesting by fission, as generally observed in the case of the presence of ergatoids. However, the social structure was significantly different according to the site, the most preserved forest showing no or rare ergatoids (but queens) compared to the other sites. Our results indicated that the presence of ergatoids in G. bisulca may help colonies to adapt to slightly disturbed habitat contexts.


Ergatoids Monogyny Polygyny Tropical montane forest 



Giovany Copete, Alexander Velez y Juan Sebastian Ramírez helped in field work. Roberto José Guerrero reviewed for morphological structures. Wilmar Torres (Graduate Biology Program office, Universidad del Valle, Cali, Colombia) helped in statistical analyses, GEAHNA ’s research group for facilities, equipment and laboratory. Photos were taken by Juan Felipe Ortega, Francisco Lopez Machado and Diana Marcela Urcuqui at the Images Laboratory from the Biology Graduate Program Department of Biology, Universidad del Valle. Helen Burnham checked for proper English. This study was financed by Universidad del Valle, Research Vicerrectory office, through the Project “Estructura del paisaje como modelador del flujo génico de dos especies de hormigas cazadoras en la zona cafetera de los andes”, code CI 71075 and by the bilateral Project Colciencias/Ecos Nord/Universidad del Valle/Université Paris 13 entitled “Estrategias de reproducción y estructuras de poblaciones en diferentes especies de insectos sociales en Colombia” Contract FP44842-672-2015.

Supplementary material

40_2019_716_MOESM1_ESM.docx (4.4 mb)
Supplementary material 1 (DOCX 4554 kb)


  1. Abadía JC, Bermúdez C, Lozano-Zambrano FH, Chacón P (2010) Hormigas cazadoras en un paisaje subandino de Colombia: riqueza, composición y especies indicadoras. Rev Col Entomol 36:127–134Google Scholar
  2. Amor F, Ortega PK, Jowers MJ, Cerdá X, Billen J, Lenoir A, Boulay R (2011) The evolution of worker-queen polymorphism in Cataglyphis ants: interplay between individual- and colony-level selections. Behav Ecol Sociobiol 65:1473–1482Google Scholar
  3. Anderson KE, Linksvayer TA, Smith CR (2008) The causes and consequences of genetic caste determination in ants (Hymenoptera: Formicidae). Myrmecol News 11:119–132Google Scholar
  4. Armbrecht I, Perfecto I, Vandermeer J (2004) Enigmatic biodiversity correlations: ant diversity responds to diverse resources. Science 304:284–286PubMedGoogle Scholar
  5. Belgade P, Mateus AR, Keller RA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol 20:1347–1363Google Scholar
  6. Bernstein RA, Gobbel M (1979) Partitioning of space in communities of ants. J Anim Ecol 48:931–942Google Scholar
  7. Blatrix R, Jaisson P (2000) Optional gamergates in the queenright ponerine ant Gnamptogenys striatula. Mayr. Insect Soc 47:193–197Google Scholar
  8. Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, New JerseyGoogle Scholar
  9. Chacón de Ulloa P, Abadía JC (2014) Dos décadas de estudio de la diversidad de hormigas en Colombia. Rev Acad Colomb Cien Exac Fís y Nat 38:250–260Google Scholar
  10. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecol Soc Am 35:445–453Google Scholar
  11. Crozier RH, Pamilo P (1996) Evolution of social insect colonies sex allocation and kin selection. Oxford University Press, OxfordGoogle Scholar
  12. Cultid-Medina CA, Escobar F (2016) Assessing the ecological response of dung beetles in an agricultural landscape using number of individuals and biomass in diversity measures. Environ Entomol 45:310–319PubMedGoogle Scholar
  13. Donoso DA, Ramón G (2009) Composition of a high diversity leaf litter ant community (Hymenoptera: Formicidae) from an Ecuadorian pre-montane rainforest. Ann Société Entomol de France 45:487–499Google Scholar
  14. Ellis S, Procter D, Buckham-Bonnett P, Robinson E (2017) Inferring polydomy: a review of functional, spatial and genetic methods for identifying colony boundaries. Insectes Soc 64:19–37PubMedGoogle Scholar
  15. Fletcher DJ, Blum MS (1981) Pheromonal control of dealation and oogenesis in virgin queen fire ants. Science 212:73–75PubMedGoogle Scholar
  16. García-Martínez MA, Quiroz-Robledo LN, Valenzuela-González JE (2015) Nuevos registros de hormigas (Hymenoptera: Formicidae) para México y los estados de Oaxaca y Veracruz. Dugesiana 22:107–109Google Scholar
  17. Giraud T, Blatrix R, Poteaux C, Solignac M, Jaisson P (2001) High genetic relatedness among nestmate queens in the polygynous ponerine ant Gnamptogenys striatula in Brazil. Beha Ecol Sociobiol 49:128–134Google Scholar
  18. Gobin B, Peeters C, Billen J (1998) Colony reproduction and arboreal life in the Ponerine ant Gnamptogenys menadensis (Hymenoptera: Formicidae). Neth J Zool 48:53–63Google Scholar
  19. Gobin B, Billen J, Peeters C (2001) Dominance interactions regulate mating in Gnamptogenys menadensis. Ethology 107:495–508Google Scholar
  20. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9Google Scholar
  21. Heinze J (1998) Intercastes, intermorphs and ergatoid queens: who is who in ant reproduction? Insectes Soc 45:113–124Google Scholar
  22. Heinze J (2008) Social plasticity: ecology, genetics, and the structure of ant societies. In: Korb J, Heinze J (eds) Ecology of social evolution. Springer, Berlin, pp 129–150Google Scholar
  23. Herrera-Rangel J, Jiménez-Carmona E, Armbrecht I (2015) Monitoring the diversity of hunting ants (Hymenoptera: Formicidae) on a fragmented and restored andean landscape. Environ Entomol 44:1287–1298PubMedGoogle Scholar
  24. Jiménez-Carmona E (2015) Respuesta ecológica de las hormigas del suelo a la restauración de un paisaje andino. Dissertation, Universidad del Valle, Cali, ColombiaGoogle Scholar
  25. Jiménez-Carmona E, Domínguez-Haydar Y, Henao N, Zabala G, Escobar S, Armbrecht I, Chacón de Ulloa P (2015) Las hormigas en el monitoreo de la restauración ecológica. In: Aguilar-Garavito M, Ramírez W (eds) Monitoreo a procesos de restauración ecológica aplicado a ecosistemas terrestres, 1st edn. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp 108–118Google Scholar
  26. Johnson RA (2010) Independent colony founding by ergatoid queens in the ant genus Pogonomyrmex: queen foraging provides an alternative to dependent colony founding. Insectes Soc 57:169–176Google Scholar
  27. Johnson R, Overson R (2018) Population and colony structure and morphometrics in the queen dimorphic little black ant, Monomorium sp. AZ-02, with a review of queen phenotypes in the genus Monomorium. PLoS One 12:1–17Google Scholar
  28. Kaptein N, Billen J, Gobin B (2003) Larval begging for food enhances reproductive options in the ponerine ant Gnamptogenys striatula. Anim Behav 69:293–299Google Scholar
  29. Kaspari M (1996) Litter ant patchiness at the 1-m2 scale: disturbance dynamics in three neotropical forests. Oecologia 107:265–273PubMedGoogle Scholar
  30. Kempf WW, Brown W (1968) Report on some neotropical ant studies. Papéis Avulsos de Zoologia 22:89–102Google Scholar
  31. Lachaud J-P, Cadena A, Schatz B, Pérez-Lachaud G, Ibarra-Núñez G (1999) Queen dimorphism and reproductive capacity in the ponerine ant Ectatomma ruidum Roger. Oecologia 120:515–523PubMedGoogle Scholar
  32. Lattke JE (1990) Revisión del género Gnamptogenys Roger en Venezuela (Hymenoptera: Formicidae). Acta Terramaris 2:1–47Google Scholar
  33. Lattke JE (1995) Revision of the ant genus Gnamptogenys in the new world (Hymenoptera: Formicidae). J Hym Res 4:137–193Google Scholar
  34. Lattke JE, Fernández F, Arias-Penna TM, Palacio EE, Mackay W, Mackay E (2008) Género Gnamptogenys Roger. In: Jiménez E, Fernández F, Arias TM, Lozano-Zambrano FH (eds) Sistemática, biogeografía y conservación de las hormigas cazadoras de Colombia, 1st edn. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp 66–100Google Scholar
  35. Lenoir JC, Lachaud JP, Nettel A, Fresneau D, Poteaux C (2011) The role of microgynes in the reproductive strategy of the neotropical ant Ectatomma ruidum. Naturwissenschaften 98:347–356PubMedGoogle Scholar
  36. Lommelen E, Johnson CA, Drijfhout FP, Billen J, Wenseleers T, Gobin B (2006) Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. J Chem Ecol 32:2023–2034PubMedGoogle Scholar
  37. McGlynn TP (2010) Polygyny in thief ants responds to competition and nest limitation but not food resources. Insectes Soc 57:23–28Google Scholar
  38. Molet M, Fisher BL, Ito F, Peeters C (2009) Shift from independent to dependent colony foundation and evolution of “multi-purpose” ergatoid queens in Mystrium ants (subfamily Amblyoponinae). Biol J Linn Soc 98:198–207Google Scholar
  39. Molet M, Wheeler D, Peeters C (2012) Evolution of novel mosaic castes in ants: modularity, phenotypic plasticity, and colonial buffering. Am Nat 180:328–341PubMedGoogle Scholar
  40. Okada Y, Plateaux L, Peeters C (2013) Morphological variability of intercastes in the ant Temnothorax nylanderi: pattern of trait expression and modularity. Insectes Soc 60:319–328Google Scholar
  41. Oliveira RF, Silva RR, Souza-Campana DR, Nakano MA, Morini MS (2015) Worker morphology of the ant Gnamptogenys striatula Mayr (Formicidae, Ectatomminae) in different landscapes from the Atlantic Forest domain. Rev Brasil Entomol 59:21–27Google Scholar
  42. Peeters C (1987) The reproductive division of labour in the queenless ponerine ant Rhytidoponera sp. 12. Insectes Soc 34:75–86Google Scholar
  43. Peeters C (2012) Convergent evolution of wingless reproductive across all subfamilies of ants, and sporadic loss of winged queens (Hymenoptera: Formicidae). Myrmecol News 1:75–91Google Scholar
  44. Peeters C, Adams RMM (2016) Uncoupling flight and reproduction in ants: evolution of ergatoid queens in two lineages of Megalomyrmex (Hymenoptera: Formicidae). J Insect Sci 16:1–5Google Scholar
  45. Peeters C, Ito F (2001) Colony dispersal and the evolution of queen morphology in social Hymenoptera. Ann Rev Entomol 46:601–630Google Scholar
  46. Peeters C, Molet M (2010) Colonial reproduction and life histories. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology, 1st edn. Oxford University Press, New York, pp 159–176Google Scholar
  47. Plateaux L (1970) Sur le polymorphisme social de la fourmi Leptothorax nylanderi (Förster). I. Morphologie et biologie compare’es des castes. Ann Sci Nat Zool Biol Anim 12:373–478Google Scholar
  48. Pratt SC (1994) Ecology and behavior of Gnamptogenys horni (Formicidae: Ponerinae). Insectes Soc 41:255–262Google Scholar
  49. Rosset H, Chapuisat M (2007) Alternative life-histories in a socially polymorphic ant. Evol Ecol 21:577–588Google Scholar
  50. Serna F, Mackay W (2010) A descriptive morphology of the ant genus Procryptocerus (Hymenoptera: Formicidae). J Insect Sci 10:1–36Google Scholar
  51. Sinclair DF (1985) On tests of spatial randomness using mean nearest neighbor distance. Ecology 66:1084–1085Google Scholar
  52. Smith SR, Anderson KE, Tillberg CV, Gadau J, Suarez AV (2008) Caste determination in a polymorphic social insect: nutritional, social and genetic factors. Am Nat 172:497–507PubMedGoogle Scholar
  53. Soares SM, Schoereder JH (2001) Ant-nest distribution in a remnant of tropical rainforest in southeastern Brazil. Insectes Soc 48:280–286Google Scholar
  54. Souza DR, Fernandes TT, Nascimento JRO, Suguituru SS, Morini MSC (2012) Characterization of ant communities (Hymenoptera: Formicidae) in twigs in the leaf litter of the Atlantic rainforest and eucalyptus trees in the southeast region of Brazil. Psyche 2012:1–12Google Scholar
  55. Steiner FM, Crozier RH, Schlick-Steiner BC (2010) Colony structure. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology, 1st edn. Oxford University Press, New York, pp 177–193Google Scholar
  56. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 27 July 2018
  57. Weber NA (1938) The biology of the fungus-growing ants. Part 4. Additional new forms Part 5. The Attini of Bolivia. Rev de Entomol 9:154–2060Google Scholar
  58. Zabala GA, Arango LM, Chacón de Ulloa P (2013) Diversidad de hormigas (Hymenoptera: Formicidae) en un paisaje cafetero de Risaralda, Colombia. Rev Colomb Entomol 39:141–149Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversidad del ValleCaliColombia
  2. 2.Laboratoire d’Ethologie Expérimentale et Comparée EA 4443Université Paris 13VilletaneuseFrance

Personalised recommendations