Royal jelly in focus

  • T. Kurth
  • S. Kretschmar
  • A. Buttstedt
Research Article


Honey bee (Apis spp.) royal jelly, a glandular secretion used to raise young larvae to future queens, has long been considered merely as food. Since queen larvae are raised upside down in their vertically oriented queen cells, royal jelly also needs to adhere the larvae to the cell ceiling to prevent the prospective queen from dropping out. This is exactly where the native acidic pH of royal jelly comes into play: only at a pH of 4.0 is royal jelly viscous enough to hold the larvae in their cells. We here show with the help of electron microscopy that royal jelly possesses a complex tissue-like organization at pH 4.0 which is similar to the dense extracellular matrix of animals providing structural support. The main structural elements at pH 4.0 are proteinaceous fibril bundles, embedded in a fibrillary net, that seem to be bunched in electron-dense structures, potential sites of fibril overlap and cross-linking. At an exogenously induced increased royal jelly pH of 7.0, these fibrillary structures are largely destroyed. This is when royal jelly viscosity decreases and holding the queen larvae in place is no longer guaranteed.


MRJP Queen determination Social insect Structural protein Protein fibril 



This project was supported by the institutional strategy ‘The Synergetic University’ of the Technische Universität Dresden financed by the Excellence Initiative of the German federal and state governments. The Electron Microscopy Facility of the Center for Molecular and Cellular Bioengineering is supported by the European Regional Development Fund (EFRE, Grant number 100232736). We are very grateful to Michael Schlierf for providing infrastructural support for A.B. and we thank Alice Séguret for language editing.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

Supplementary material

40_2018_662_MOESM1_ESM.pdf (291 kb)
Supplementary material 1 (PDF 290 KB)


  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  2. Aristotle (1965, original work published ca. 350 BC) Book 5, Part 21. In: Henderson J (ed) Peck AL (transl) historia animalium. Harvard University Press, Cambridge, p 189Google Scholar
  3. Bowes JH, Cater CW (1965) The reaction of glutaraldehyde with proteins and other biological materials. J R Microsc Soc 85:193–200. CrossRefGoogle Scholar
  4. Buttstedt A, Ihling CH, Pietzsch M, Moritz RFA (2016) Royalactin is not a royal making of a queen. Nature 537:E10–E12. CrossRefGoogle Scholar
  5. Buttstedt A, Mureşan CI, Lilie H, Hause G, Ihling CH, Schulze S-H, Pietzsch M, Moritz RFA (2018) How honeybees defy gravity with royal jelly to raise queens. Curr Biol 28:1095–1100. CrossRefPubMedGoogle Scholar
  6. Callow RK, Johnston NC, Simpson J (1959) 10-Hydroxy-∆2-decenoic acid in the honeybee (Apis mellifera). Experientia 15:421–422. CrossRefPubMedGoogle Scholar
  7. Deerinck TJ, Bushong EA, Thor A, Ellisman MH (2010) SBEM Protocol v7_01_10. NCMIR methods for 3D EM: a new protocol for preparation of biological specimens for serial blockface scanning electron microscopy. National Center for Microscopy and Imaging Research. Accessed 12 Jun 2018
  8. Deseyn J, Billen J (2005) Age-dependent morphology and ultrastructure of the hypopharyngeal gland of Apis mellifera workers (Hymenoptera, Apidae). Apidologie 36:49–57. CrossRefGoogle Scholar
  9. Dönhoff (1859) Beiträge zur Bienenkunde. IV. Welches Mittel wendet die Natur an, dass die Larve nicht vom Boden der Zelle herunterfällt? Eichstädter Bienenztg 15:33–34Google Scholar
  10. Goldberg B, Sherr CJ (1973) Secretion and extracellular processing of procollagen by cultured human fibroblasts. Proc Natl Acad Sci USA 70:361–365. CrossRefPubMedGoogle Scholar
  11. Hanes J, Šimúth J (1992) Identification and partial characterization of the major royal jelly protein of the honey bee (Apis mellifera L.). J Apic Res 31:22–26. CrossRefGoogle Scholar
  12. Hanker JS, Deb C, Wasserkrug HL, Seligman AM (1966) Staining tissue for light and electron microscopy by bridging metals with multidentate ligands. Science 152:1631–1634. CrossRefPubMedGoogle Scholar
  13. Hayat MA (1981) Fixation for electron microscopy. Academic Press, New YorkGoogle Scholar
  14. Herrera AM, McParland BE, Bienkowska A, Tait R, Paré PD, Seow CY (2005) ‘Sarcomers’ of smooth muscle: functional characteristics and ultrastructural evidence. J Cell Sci 118:2381–2392. CrossRefGoogle Scholar
  15. Hoffmann I (1960) Untersuchungen über die Herkunft von Komponenten des Königinnenfuttersaftes der Honigbienen. Z Bienenforschung 5:101–111Google Scholar
  16. Huber F (1792) Lettre cinquieme. In: Nouvelles observations sur les abeilles. Barde, Manget & Compagnie, Imprimeurs-Libraires, Genève, p 164CrossRefGoogle Scholar
  17. Isidorov VA, Bakier S, Grzech I (2012) Gas chromatographic–mass spectrometric investigation of volatile and extractable compounds of crude royal jelly. J Chromatogr B 885–886:109–116. CrossRefGoogle Scholar
  18. Kemmenoe BH, Bullock GR (1983) Structure analysis of sputter-coated and ion-beam sputter-coated films: a comparative study. J Microsc 132:153–163. CrossRefPubMedGoogle Scholar
  19. Kheyri H, Cribb BW, Reinhard J, Claudianos C, Merritt DJ (2012) Novel actin rings within the secretory cells of honeybee royal jelly glands. Cytoskeleton 69:1032–1039. CrossRefPubMedGoogle Scholar
  20. Kratky E (1931) Morphologie und Physiologie der Drüsen in Kopf und Thorax der Honigbiene (Apis mellifica L.). Z Wiss Zool 139:119–200Google Scholar
  21. Kumar S, Udgaonkar JB (2010) Mechanisms of amyloid fibril formation by proteins. Curr Sci 98:639–656Google Scholar
  22. Liu TP (1990) Ultrastructural analysis on the gland secretion in the extracellular ducts of the hypopharyngeal glands of the honeybee infected by Nosema apis. Tissue Cell 22:533–540. CrossRefPubMedGoogle Scholar
  23. Maleszka R (2018) Beyond Royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Commun Biol 1:8. CrossRefGoogle Scholar
  24. Mandacaru SC, do Vale LH, Vahidi S, Xiao Y, Skinner OS, Ricart CA, Kelleher NL, de Sousa MV, Konermann L (2017) Characterizing the structure and oligomerization of major Royal Jelly Protein 1 (MRJP1) by mass spectrometry and complementary biophysical tools. Biochemistry 56:1645–1655. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Patel NG, Haydak MH, Gochnauer TA (1960) Electrophoretic components of the proteins in honeybee larval food. Nature 186:633–634. CrossRefPubMedGoogle Scholar
  26. Pavel CI, Mărghitaș LA, Dezmirean DS, Tomoș LI, Bonta V, Şapcaliu A, Buttstedt A (2014) Comparison between local and commercial royal jelly—use of antioxidant activity and 10-hydroxy-2-decenoic acid as quality parameter. J Apic Res 53:116–123. CrossRefGoogle Scholar
  27. Pirk CWW (2018)) Honeybee evolution: royal jelly proteins help queen larvae to stay on top. Curr Biol 28:R350–R351. CrossRefPubMedGoogle Scholar
  28. Porter KR, Kallman F (1953) The properties and effects of osmium tetroxide as a tissue fixative with special reference to its use for electron microscopy. Exp Cell Res 4:127–141. CrossRefGoogle Scholar
  29. Raspanti M, Viola M, Sonaggere M, Tira ME, Tenni R (2007) Collagen fibril structure is affected by collagen concentration and decorin. Biomacromolecules 8:2087–2091. CrossRefPubMedGoogle Scholar
  30. Rembold H, Hanser G (1964) Über den Weiselzellenfuttersaft der Honigbiene VIII. Nachweis des determinierenden Prinzips im Futtersaft der Königinnenlarven. Hoppe-Seyler’s Z Physiol Chem 339:251–254. CrossRefPubMedGoogle Scholar
  31. Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy—preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schiemenz P (1883) Über das Herkommen des Futtersaftes und die Speicheldrüsen der Biene nebst einem Anhange über das Riechorgan. Z Wiss Zool 38:71–135Google Scholar
  33. Schmitzová J, Klaudiny J, Albert S, Schröder W, Schreckengost W, Hanes J, Júdová J, Šimúth J (1998) A family of major royal jelly proteins of the honeybee Apis mellifera L.. Cell Mol Life Sci 54:1020–1030. CrossRefPubMedGoogle Scholar
  34. Shuel RW, Dixon SE (1986) An artificial diet for laboratory rearing of honeybees. J Apic Res 25:35–43. CrossRefGoogle Scholar
  35. Snodgrass RE (1925) The alimentary canal and its glands. In: Anatomy and physiology of the honeybee. McGraw-Hill Book Company, New York, p 171Google Scholar
  36. Swammerdam J (1738) Tractatus de Apibus. In: Boerhaave H (ed) Biblia Naturae sive Historia Insectorum. Isaak Severinus, Boudewyn van der Aa & Pieter van der Aa, Leiden, p 400Google Scholar
  37. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27. CrossRefGoogle Scholar
  38. Tian W, Li M, Guo H, Peng W, Xue X, Hu Y, Liu Y, Zhao Y, Fang X, Wang K, Li X, Tong Y, Conlon MA, Wu W, Ren F, Chen Z (2018) Architecture of the native major royal jelly protein 1 oligomer. Nat Commun 9:3373. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vallet A, Cassier P, Lensky Y (1991) Ontogeny of the fine structure of the mandibular glands of the honeybee (Apis mellifera L.) workers and the pheromonal activity of 2-heptanone. J Insect Physiol 37:789–804. CrossRefGoogle Scholar
  40. Venable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408. CrossRefPubMedPubMedCentralGoogle Scholar
  41. von Planta A (1888) Über den Futtersaft der Bienen. Z Physiol Chem 12:327–354. CrossRefGoogle Scholar
  42. Yamaguchi KY, He S, Li Z, Murata K, Hitomi N, Mozumi M, Ariga R, Enomoto T (2013) Quantification of Major Royal Jelly Protein 1 in fresh royal jelly by indirect enzyme-linked immunosorbent assay. Biosci Biotechnol Biochem 77:1310–1312. CrossRefPubMedGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  1. 1.DFG-Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
  2. 2.B CUBE-Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany

Personalised recommendations