Advertisement

Cannibalism associated with artificial wounds on the bodies of Reticulitermes speratus workers and soldiers (Isoptera: Rhinotermitidae)

  • Y. Yamanaka
  • R. Iwata
  • S. Kiriyama
Research Article

Abstract

We investigated the cannibalism and its association with cannibalistic grooming in Reticulitermes speratus (Kolbe), first by observing workers’ cannibalistic behavior against workers artificially wounded on different body parts. Almost all the wounded thoraces and abdomina were eaten, while in some of the abdomen-wounded individuals, nestmates’ cannibalism extended from the abdomen to the thorax, and thorax was cannibalistically attacked in all the abdomen-wounded individuals. In thorax-wounded individuals cannibalistic damage mostly extended from the thorax to the abdomen to a lesser degree. In the assessments of the frequencies and durations of the cannibalistic groomings toward different body parts, the wounded individuals, upon being groomed, occasionally exhibited vibrational behavior, and its frequencies upon the groomings toward wounded body parts were significantly higher than those toward non-wounded body parts. Vibration significantly reduced the duration of cannibalistic grooming on the wounded head and abdomen, while it reduced the grooming frequency and did not reduce the duration of grooming on wounded thorax. These results suggest that the vibration serves as a vital sign or death-negative factor in death recognition. A feeding experiment with workers’ cuticular hydrocarbon extract showed that it did not promote cannibalistic behavior. A feeding experiment with filter papers impregnated with different body part extracts showed that all the extracts exhibited phagostimulant activity, with workers’ body extracts resulting in significantly higher quantity of consumption than in soldiers’ except abdomen. Further assay revealed a stronger activity of labial gland compared to the labial gland-removed thorax, suggesting the key role of labial gland in cannibalism.

Keywords

Body fluid Hemolymph Grooming Labial gland Vibration behavior 

References

  1. Austin J, Szalanski AL, Scheffrahn RH et al (2005) Genetic evidence for the synonymy of two Reticulitermes species: Reticulitermes flavipes and Reticulitermes santonensis. Ann Entomol Soc Am 98:395–401.  https://doi.org/10.1603/0013-8746(2005)098%5B0395:geftso%5D2.0.co;2 CrossRefGoogle Scholar
  2. Bagnères AG, Killian A, Clément JL, Lange C (1991) Interspecific recognition among termites of the genus Reticulitermes: evidence for a role for the cuticular hydrocarbons. J Chem Ecol 17:2397–2420.  https://doi.org/10.1007/BF00994590 CrossRefPubMedGoogle Scholar
  3. Bordereau C, Pasteels JM (2011) Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Berlin, pp 279–320Google Scholar
  4. Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 44:577–580.  https://doi.org/10.1038/244577a0 CrossRefGoogle Scholar
  5. Chouvenc T, Robert A, Sémon E, Bordereau C (2012) Burial behaviour by dealates of the termite Pseudacanthotermes spiniger (Termitidae, Macrotermitinae) induced by chemical signals from termite corpses. Insectes Soc 59:119–125.  https://doi.org/10.1007/s00040-011-0197-3 CrossRefGoogle Scholar
  6. Collins NM (1983) The utilization of nitrogen resources by termites (Isoptera). In: Lee JA, McNeill S, Rorison IH (eds) Nitrogen as an ecological factor. Blackwell Scientific Publications, London, pp 381–411Google Scholar
  7. Connétable S, Robert A, Bouffault F, Bordereau C (1999) Vibratory alarm signals in two sympatric higher termite species: Pseudacanthotermes spiniger and P. militaris (Termitidae, Macrotermitinae). J Ins Behav 12:329–342.  https://doi.org/10.1023/A:1020887421551 CrossRefGoogle Scholar
  8. Cook SC, Scott KG (1933) The nutritional requirements of Zootermopsis (Termopsis) angusticollis. J Cell Comp Physiol 4:95–110CrossRefGoogle Scholar
  9. Cornelius ML (2003) Evaluation of semiochemicals as feeding stimulants for the Formosan subterranean termite. Sociobiology 41:583–591Google Scholar
  10. Delphia CM, Copren KA, Haverty MI (2003) Agonistic behavior between individual worker termites from three cuticular hydrocarbon phenotypes of Reticulitermes (Isoptera: Rhinotermitidae) from Northern California. Ann Entomol Soc Am 96:585–593.  https://doi.org/10.1603/0013-8746(2003)096%5B0585:ABBIWT%5D2.0.CO;2 CrossRefGoogle Scholar
  11. Dhanarajan G (1978) Cannibalism and necrophagy in a subterranean termite. Malay Nat J 31:237–251Google Scholar
  12. Enguita FJ, Leitão AL (2013) Hydroquinone: environmental pollution, toxicity, and microbial answers. Biomed Res Int.  https://doi.org/10.1155/2013/542168 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Evans TA, Inta R, Lai JCS, Lenz M (2007) Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insectes Soc 54:374–382.  https://doi.org/10.1007/s00040-007-0958-1 CrossRefGoogle Scholar
  14. Evans TA, Lai JCS, Toledano E et al (2005) Termites assess wood size by using vibration signals. Proc Natl Acad Sci USA 102:3732–3737.  https://doi.org/10.1073/pnas.0408649102 CrossRefPubMedGoogle Scholar
  15. Fujita A, Miura T, Matsumoto T (2008) Differences in cellulose digestive systems among castes in two termite lineages. Physiol Entomol 33:73–82.  https://doi.org/10.1111/j.1365-3032.2007.00606.x CrossRefGoogle Scholar
  16. Ghesini S, Marini M (2009) Caste differentiation and growth of laboratory colonies of Reticulitermes urbis (Isoptera, Rhinotermitidae). Insectes Soc 56:309–318.  https://doi.org/10.1007/s00040-009-0025-1 CrossRefGoogle Scholar
  17. Grassé P-P, Noirot C (1946) Le polymorphisme social du termite à cou jaune (Kalotermes flavicolis): La production des soldats. C R Acad Sci 223:869–871Google Scholar
  18. Haverty MI (1979) Soldier production and maintenance of soldier proportions in laboratory experimental groups of Coptotermes formosanus Shiraki. Insectes Soc 26:69–84.  https://doi.org/10.1007/BF02283914 CrossRefGoogle Scholar
  19. Howard RW, Blomquist GJ (1982) Chemical ecology and biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149–172.  https://doi.org/10.1146/annurev.en.27.010182.001053 CrossRefGoogle Scholar
  20. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393.  https://doi.org/10.1146/annurev.ento.50.071803.130359 CrossRefGoogle Scholar
  21. Howse PE (1965) On the significance of certain oscillatory movements of termites. Insectes Soc 12:335–345CrossRefGoogle Scholar
  22. Iida M, Akino T (2016) Defensive effect of soldier-specific secretion by Reticulitermes speratus (Isoptera: Rhinotermitidae) on the facultative termitophagous ponerine ant Brachyponera chinensis (Hymenoptera: Ponerinae). Appl Entomol Zool 51:111–116.  https://doi.org/10.1007/s13355-015-0379-y CrossRefGoogle Scholar
  23. Inward DJG, Vogler P, Eggleton P (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967.  https://doi.org/10.1016/j.ympev.2007.05.014 CrossRefPubMedGoogle Scholar
  24. Iwata R, Itoh T, Shinjo G (1987) Laboratory observations on the grooming and some other behaviors of the workers and soldiers of the termite, Coptotermes formosanus Shiraki (Isoptera). Termite 70:13–16Google Scholar
  25. Iwata R, Yosikawa T, Monden A, Kikuchi T, Yamane A (1999) Grooming and some other inter-individual behavioral actions in Reticulitermes speratus (Isoptera: Rhinotrermitidae), with reference to the frequency of each action among caste stages. Sociobiology 34:45–64Google Scholar
  26. Lewis VR (1997) Alternative control strategies for termites. J Agric Entomol 14:291–307Google Scholar
  27. Lüscher M (1952) Die Produktion und Elimination von Ersatzgeschlechtstieren bei der Termite Kalotermes flavicollis Fabr. Z vergl Physiol 34:123–141Google Scholar
  28. Machida M, Kitade O, Miura T, Matsumoto T (2001) Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insectes Soc 48:52–56.  https://doi.org/10.1007/PL00001745 CrossRefGoogle Scholar
  29. Matsuura K (2001) Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92:20–26CrossRefGoogle Scholar
  30. Matsuura K (2002) Colony-level stabilization of soldier head width for head-plug defense in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Behav Ecol Sociobiol 51:172–179.  https://doi.org/10.1007/s00265-001-0426-2 CrossRefGoogle Scholar
  31. McMahan EA (1969) Feeding relationships and radioisotope techniques. In: Kishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, pp 387–406CrossRefGoogle Scholar
  32. Meyer HJ, Norris DM (1974) Lignin intermediates and simple phenolics as feeding stimulants for Scolytus multistriatus. J Insect Physiol 20:2015–2021CrossRefPubMedGoogle Scholar
  33. Myles TG (1986) Evidence of parental and/or sibling manipulation in three species of termites in Hawaii (Isoptera). Proc Hawaii Entomol Soc 27:120–136Google Scholar
  34. Nalepa CA (1994) Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 57–104Google Scholar
  35. Neoh K-B, Yeap B-K, Tsunoda K, Yoshimura T, Lee C-Y (2012) Do termites avoid carcasses? Behavioral responses depend on the nature of the carcasses. PLoS One 7(e36375):1–11Google Scholar
  36. Perdereau E, Bagnères AG, Bankhead-Dronnet S et al (2013) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol Ecol 22:1105–1119.  https://doi.org/10.1111/mec.12140 CrossRefPubMedGoogle Scholar
  37. Prestwich GD (1984) Defense mechanisms of termites. Annu Rev Entomol 29:201–232CrossRefGoogle Scholar
  38. Raina A, Park YI, Lax A (2004) Defaunation leads to cannibalism in primary reproductives of the formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 97:753–756.  https://doi.org/10.1603/0013-8746(2004)097%5B0753:DLTCIP%5D2.0.CO;2 CrossRefGoogle Scholar
  39. Raina A, Bland J, Osbrink W (2005) Hydroquinone is not a phagostimulant for the formosan subterranean termite. J Chem Ecol 31:509–517.  https://doi.org/10.1007/s10886-005-2026-5 CrossRefPubMedGoogle Scholar
  40. R Development Core Team (2013) R: a language and environment for statistical computing computer program, version 3.0.2. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 30 Nov 2017
  41. Reinhard J, Hertel H, Kaib M (1997) Feeding stimulating signal in labial gland secretion of the subterranean termite Reticulitermes santonensis. J Chem Ecol 23:2371–2381.  https://doi.org/10.1023/B:JOEC.0000006680.96008.48 CrossRefGoogle Scholar
  42. Reinhard J, Kaib M (2001) Food exploitation in termites: Indication for a general feeding-stimulating signal in labial gland secretion of Isoptera. J Chem Ecol 27:189–201.  https://doi.org/10.1023/A:1005636504469 CrossRefPubMedGoogle Scholar
  43. Reinhard J, Lacey MJ, Ibarra F, Schroeder FC, Kaib M, Lenz M (2002) Hydroquinone: a general phagostimulating pheromone in termites. J Chem Ecol 28:1–14.  https://doi.org/10.1023/A:1013554100310 CrossRefPubMedGoogle Scholar
  44. Rosengaus RB, Jordan C, Lefebvre ML, Traniello JFA (1999) Pathogen alarm behavior in a termite: a new form of communication in social insects. Naturwissenschaften 86:544–548.  https://doi.org/10.1007/s001140050672 CrossRefPubMedGoogle Scholar
  45. Sands WA (1982) Agonistic behavior of African soldierless Apicotermitinae (Isoptera: Termitidae). Sociobiology 7:61–72Google Scholar
  46. Song D, Hu XP, Su N-Y (2006) Survivorship, cannibalism, body weight loss, necrophagy, and entombment in laboratory groups of the Formosan subterranean termite, Coptotermes formosanus under starvation (Isoptera: Rhinotermitidae). Sociobiology 47:27–39Google Scholar
  47. Su N-Y, Haverty MI (1991) Agonistic behavior among colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), from Florida and Hawaii: lack of correlation of cuticular hydrocarbon composition. J Insect Behav 4:115–128.  https://doi.org/10.1007/BF01092555 CrossRefGoogle Scholar
  48. Su N-Y, La Fage JP (1986) Effects of starvation on survival and maintenance of soldier proportion in laboratory groups of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 79:312–316.  https://doi.org/10.1093/aesa/79.2.312 CrossRefGoogle Scholar
  49. Sun Q, Zhou X (2013) Corpse management in social insects. Int J Biol Sci 9:313–321.  https://doi.org/10.7150/ijbs.5781 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tokuda G, Watanabe H, Matsumoto T, Noda H (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-β-1,4-gIucanase. Zool Sci 14:83–93CrossRefPubMedGoogle Scholar
  51. Whitman JG, Forschler BT (2007) Observational notes on short-lived and infrequent behaviors displayed by Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 100:763–771.  https://doi.org/10.1603/0013-8746(2007)100%5B763:ONOSAI%5D2.0.CO;2 CrossRefGoogle Scholar
  52. Yanagawa A, Shimizu S (2007) Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. Biocontrol 52:75–85.  https://doi.org/10.1007/s10526-006-9020-x CrossRefGoogle Scholar
  53. Yanagawa A, Yokohari F, Shimizu S (2008) Defense mechanism of the termite, Coptotermes formosanus Shiraki, to entomopathogenic fungi. J Invertebr Pathol 97:165–170.  https://doi.org/10.1016/j.jip.2007.09.005 CrossRefPubMedGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  1. 1.Department of Forest Science and Resources, College of Bioresource SciencesNihon UniversityFujisawaJapan

Personalised recommendations