Advertisement

Small Gaps of GOE

  • Renjie FengEmail author
  • Gang Tian
  • Dongyi Wei
Article
  • 129 Downloads

Abstract

In this article, we study the smallest gaps between eigenvalues of the Gaussian orthogonal ensemble (GOE). The main result is that the smallest gaps, after being normalized by n, will converge to a Poisson distribution, and the limiting density of the kth normalized smallest gap is \(2{}x^{2k-1}e^{-x^{2}}/(k-1)!\). The proof is based on the method developed in Feng and Wei (Small gaps of circular \(\beta \)-ensemble. arXiv:1806.01555). We need to prove the convergence of the factorial moments of the smallest gaps, which makes use of the Pfaffian structure of GOE and some comparison results between the one-component log-gas and the two-component log-gas.

Notes

Acknowledgements

We would like to thank P. Bourgade, O. Zeitouni, G. Ben Arous and P. Forrester for many helpful discussions. We are indebted to the anonymous reviewers for providing many corrections and insightful comments, this paper would not have been possible without their supportive work.

References

  1. AGZ10.
    G.W. Anderson, A. Guionnet, and O. Zeitouni. An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010).Google Scholar
  2. BT77.
    M.V. Berry and M. Tabor. Level clustering in the regular spectrum. Proc. R. Soc. London A 356 (1977), 375–394.CrossRefGoogle Scholar
  3. BB13.
    G. Ben Arous and P. Bourgade. Extreme gaps between eigenvalues of random matrices. Ann. Probab. 41 (2013), 2648-2681.MathSciNetCrossRefGoogle Scholar
  4. BBRR17.
    V. Blomer, J. Bourgain, M. Radziwill, and Z. Rudnick. Small gaps in the spectrum of the rectangular billiard. Ann. Sci. Éc. Norm. Supér (4) (5)50 (2017), 1283–1300.MathSciNetCrossRefGoogle Scholar
  5. BGS86.
    O. Bohigas, M.-J. Giannoni, and C. Schmit. Spectral fluctuations of classically chaotic quantum systems. In: Quantum Chaos and Statistical Nuclear Physics, edited by Thomas H. Seligman and Hidetoshi Nishioka, Lecture Notes in Physics, vol. 263. Springer, Berlin (1986), pp. 18–40.Google Scholar
  6. Bou.
    P. Bourgade. Extreme gaps between eigenvalues of Wigner matrices, arXiv:1812.10376.
  7. BEY14.
    P. Bourgade, L. Erdős, and H.-T. Yau. Universality of general \(\beta \)-ensembles. Duke Math. J. (6)163 (2014), 1127–1190.MathSciNetCrossRefGoogle Scholar
  8. CGHPSSSST17.
    J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S.H. Shenker, D. Stanford, A. Streicher, and M. Tezuka. Black holes and random matrices. J. High Energy. Phys. 2017 (2017), 118.MathSciNetCrossRefGoogle Scholar
  9. DG09.
    P. Deift and D. Gioev. Random Matrix Theory: Invariant Ensembles and Universality. Courant Lecture Notes Volume: 18 (2009) 217 pp, AMS.Google Scholar
  10. Dia03.
    P. Diaconis. Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture. Bull. Am. Math. Soc. (N.S.) 40 (2003), 155–178.MathSciNetCrossRefGoogle Scholar
  11. EY15.
    L. Erdős and H.-T. Yau. Gap universality of generalized Wigner and \(\beta \)-ensembles. J. Eur. Math. Soc. (JEMS) (8)17 (2015), 1927–2036.MathSciNetCrossRefGoogle Scholar
  12. FTWa.
    R. Feng, G. Tian, and D. Wei. Spectrum of SYK model, arXiv:1801.10073, to appear in Peking Mathematical Journal.  https://doi.org/10.1007/s42543-018-0007-1.CrossRefGoogle Scholar
  13. FTWb.
    R. Feng, G. Tian, and D. Wei. Spectrum of SYK model II: Central limit theorem, arXiv: 1806.05714.
  14. FTWc.
    R. Feng, G. Tian, and D. Wei. Spectrum of SYK model III: Large deviations and concentration of measures. arXiv:1806.04701.
  15. FWa.
    R. Feng and D. Wei. Small gaps of circular \(\beta \)-ensemble. arXiv:1806.01555.
  16. FWb.
    R. Feng and D. Wei. Large gaps of CUE and GUE. arXiv:1807.02149.
  17. FG16.
    A. Figalli and A. Guionnet. Universality in several-matrix models via approximate transport maps. Acta Math. (1)217 (2016), 81–176.MathSciNetCrossRefGoogle Scholar
  18. For.
    P.J. Forrester. Log-gases and random matrices, LMS-34, Princeton University Press.Google Scholar
  19. GV16.
    A.M. Garcia-Garcia and J.J.M. Verbaarschot. Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model. Phys. Rev. D94 (2016), 126010.CrossRefGoogle Scholar
  20. GV17.
    A.M. Garcia-Garcia and J.J.M. Verbaarschot. Analytical spectral density of the Sachdev-Ye-Kitaev model at finite \(N\). Phys. Rev. D96 (2017), 066012.Google Scholar
  21. KS99.
    N.M. Katz and P. Sarnak. Random Matrices, Frobenius Eigenvalues and Monodromy, volume 45 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1999).Google Scholar
  22. LLM.
    B. Landon, P. Lopatto, and J. Marcinek. Comparison theorem for some extremal eigenvalue statistics. arXiv:1812.10022.
  23. Meh91.
    M.L. Mehta. Random Matrices. Academic Press, New York, 2nd edition (1991).zbMATHGoogle Scholar
  24. NTV17.
    H. Nguyen, T. Tao, and V. Vu. Random matrices: tail bounds for gaps between eigenvalues. Probab. Theory Relat. Fields (3-4)167 (2017), 777–816.MathSciNetCrossRefGoogle Scholar
  25. RSX13.
    B. Rider, C.D. Sinclair, and Y. Xu. A solvable mixed charge ensemble on the line: global results. Probab. Theory Relat. Fields 155 (2013), 127–164.MathSciNetCrossRefGoogle Scholar
  26. STKZ.
    M. Smaczynski, T. Tkocz, M. Kus, and K. Zyczkowski. Extremal spacings between eigenphases of random unitary matrices and their tensor products. Phys. Rev. E 88, 052902.Google Scholar
  27. Sos.
    A. Soshnikov. Statistics of extreme spacing in determinantal random point processes. Mosc. Math. J. 5, 705–719, 744.MathSciNetCrossRefGoogle Scholar
  28. Tao13.
    T. Tao. The asymptotic distribution of a single eigenvalue gap of a Wigner matrix. Probab. Theory Relat. Fields (1-2)157 (2013), 81–106.MathSciNetCrossRefGoogle Scholar
  29. TV11.
    T. Tao and V. Vu. Random matrices: universality of local eigenvalue statistics. Acta Math. (1)206 (2011), 127–204.MathSciNetCrossRefGoogle Scholar
  30. Vin01.
    J. Vinson, Closest spacing of eigenvalues. Ph.D. thesis, Princeton University (2001).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Beijing International Center for Mathematical ResearchPeking UniversityBeijingChina

Personalised recommendations