Advertisement

Geometric and Functional Analysis

, Volume 29, Issue 5, pp 1325–1368 | Cite as

Dimension Estimates for Non-conformal Repellers and Continuity of Sub-additive Topological Pressure

  • Yongluo Cao
  • Yakov PesinEmail author
  • Yun Zhao
Article
  • 204 Downloads

Abstract

Given a non-conformal repeller \(\Lambda \) of a \(C^{1+\gamma }\) map, we study the Hausdorff dimension of the repeller and continuity of the sub-additive topological pressure for the sub-additive singular valued potentials. Such a potential always possesses an equilibrium state. We then use a substantially modified version of Katok’s approximating argument, to construct a compact invariant set on which the corresponding dynamical quantities (such as Lyapunov exponents and metric entropy) are close to that of the equilibrium measure. This allows us to establish continuity of the sub-additive topological pressure and obtain a sharp lower bound of the Hausdorff dimension of the repeller. The latter is given by the zero of the super-additive topological pressure.

Keywords and phrases

Expanding map Repeller Topological pressure Non-uniform hyperbolicity theory Dimension 

Mathematics Subject Classification

37C45 37D35 37H15 

Notes

Acknowledgements

The authors would like to thank the referees for their careful reading and valuable comments which helped improve the paper substantially. The authors would like to thank Professor Dejun Feng and Wen Huang for their suggestions and comments. Ya. P. wants to thank Mittag-Leffler Institute and the Department of Mathematics of Weizmann Institute of Science where part of this work was done for their hospitality.

References

  1. ACW17.
    A. Avila, S. Crovisier, and A. Wilkinson. \(C^1\) density of stable ergodicity. Preprint, (2017) http://www.math.uchicago.edu/~wilkinso/papers/acw2 -14Sept2017.pdf
  2. BCH10.
    J. Ban, Y. Cao, and H. Hu. The dimension of a non-conformal repeller and an average conformal repeller. Trans. Amer. Math. Soc., (2)362 (2010), 727–751MathSciNetzbMATHGoogle Scholar
  3. Bar96.
    L. Barreira. A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergod. Th. & Dynam. Sys., 16 (1996), 871–928MathSciNetzbMATHGoogle Scholar
  4. Bar06.
    L. Barreira. Nonadditive thermodynamic formalism: equilibrium and Gibbs measures. Disc. Contin. Dyn. Syst., 16 (2006), 279–305MathSciNetzbMATHGoogle Scholar
  5. Bar08.
    L. Barreira. Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics. 272, Birkhäuser Verlag, Basel (2008).zbMATHGoogle Scholar
  6. Bar11.
    L. Barreira. Thermodynamic Formalism and Applications to Dimension Theory, Progress in Mathematics. 294, Birkhäuser, Springer Basel (2011).zbMATHGoogle Scholar
  7. BG11.
    L. Barreira and K. Gelfert. Dimension estimates in smooth dynamics: A survey of recent results. Ergod. Th. & Dynam. Sys., 31 (2011), 641–671MathSciNetzbMATHGoogle Scholar
  8. BP13.
    L. Barreira and Y. Pesin. Introduction to smooth ergodic theory. GSM, 148, AMS, Providence, Rhode Island (2013).Google Scholar
  9. BP07.
    L. Barreira and Y. Pesin. Nonuniform hyperbolicity: Dynamics of systems with nonzero Lyapunov exponents. Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge University Press, Cambridge (2007)Google Scholar
  10. Bow79.
    R. Bowen. Hausdorff dimension of quasicircles. Institut des Hautes Études Scientifiques, 50 (1979), 11–25MathSciNetzbMATHGoogle Scholar
  11. CFH08.
    Y. Cao, D. Feng, and W. Huang, The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst., 20 (2008) 639–657MathSciNetzbMATHGoogle Scholar
  12. CP10.
    J. Chen and Y. Pesin. Dimension of non-conformal repellers: A survey. Nonlinearity, 23 (2010), R93–R114MathSciNetzbMATHGoogle Scholar
  13. Chu99.
    Y. Chung, Shadowing properties of non-invertible maps with hyperbolic measures. Tokyo J. Math., 22 (1999), 145–166MathSciNetzbMATHGoogle Scholar
  14. DS.
    T. Das and D. Simmons. The Hausdorff and dynamical dimensions of self-affine sponges: a dimension gap result. arXiv:1604.08166v3 [math.DS]
  15. Fal03.
    K. Falconer. Fractal geometry: mathematical foundations and applications. Wiley, New York (2003).zbMATHGoogle Scholar
  16. Fac88.
    K. Falconer. A subadditive thermodynamic formalism for mixing repellers. Journal of Physics A, 21 (1988), L737–L742MathSciNetzbMATHGoogle Scholar
  17. Fal94.
    K. Falconer. Bounded distortion and dimension for non-conformal repellers. Math. Proc. Camb. Phil. Soc., 115 (1994), 315–334zbMATHGoogle Scholar
  18. FH10.
    D. Feng and W. Huang. Lyapunov spectrum of asymptotically sub-additive potentials. Commun. Math. Phys., 297 (2010), 1-43MathSciNetzbMATHGoogle Scholar
  19. FH16.
    D. Feng and W. Huang. Variational principle for weighted topological pressure. J. Math. Pures Appl., 106 (2016), 411–452MathSciNetzbMATHGoogle Scholar
  20. FS14.
    D. Feng and P. Shmerkin. Non-conformal repellers and the continuity of pressure for matrix cocycles. Geom. Funct. Anal., 24 (2014), 1101–1128MathSciNetzbMATHGoogle Scholar
  21. FLQ10.
    G. Froyland, S. Lloyd, and A. Quas. Coherent structures and isolated spectrum for Perron-Frobenius cocycles. Ergod. Th. & Dynam. Sys., 30 (2010), 729–756MathSciNetzbMATHGoogle Scholar
  22. Gel10.
    K. Gelfert. Repellers for non-uniformly expanding maps with singular or critical points. Bull. Braz. Math. Soc., 41 (2010), 237–257MathSciNetzbMATHGoogle Scholar
  23. Gel16.
    K. Gelfert, Horseshoes for diffeomorphisms preserving hyperbolic measures. Math. Z., 283 (2016), 685–701MathSciNetzbMATHGoogle Scholar
  24. JL00.
    M. Jiang and R. de la Llave. Smooth dependence of thermodynamic limits of SRBmeasures. Comm. Math. Phys., 211 (2000), 303–333MathSciNetzbMATHGoogle Scholar
  25. Kat80.
    A. Katok. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math., 51, (1980) 137–173MathSciNetzbMATHGoogle Scholar
  26. KH95.
    A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications. vol. 54, Cambridge University Press, Cambridge (1995).zbMATHGoogle Scholar
  27. KNP89.
    A. Katok, G. Knieper, M. Pollicott and H. Weiss. Differentiability and analyticity of topological entropy for Anosov and geodesic flows. Invent. Math., 98 (1989), 581–597MathSciNetzbMATHGoogle Scholar
  28. LS13.
    S. Luzzatto and F. J. Sanchez-Salas. Uniform hyperbolic approximation of measures with non-zeroLyapunov exponents. Proc. Am. Math. Soc., 141 (2013), 3157–3169zbMATHGoogle Scholar
  29. Man90.
    R. Mañé. The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces. Bol. Soc. Brasil. Mat. (N.S.), 20 (1990), 1–24MathSciNetzbMATHGoogle Scholar
  30. Men85.
    L. Mendoza. The entropy of \(C^2\) surface diffeomorphisms in terms of Hausdorff dimension and a Lyapunov exponent. Ergod. Th. & Dynam. Sys., 5 (1985), 273–283MathSciNetzbMATHGoogle Scholar
  31. Men88.
    L. Mendoza. Ergodic attractors for diffeormorphisms of surfaces. J. Lond. Math. Soc., 37 (1988), 362–374zbMATHGoogle Scholar
  32. Men89.
    L. Mendoza. Topological entropy of homoclinic closures. Trans. Am. Math. Soc., 311 (1989), 255–266MathSciNetzbMATHGoogle Scholar
  33. MM83.
    H. McCluskey and A. Manning. Hausdorff dimension for horseshoes. Ergod. Th. & Dynam. Sys. 3 (1983), 251–260MathSciNetzbMATHGoogle Scholar
  34. Mis80.
    M. Misiurewicz and W. Szlenk. Entropy of piecewise monotone mappings. Stud. Math., (1)67 (1980), 45–63MathSciNetzbMATHGoogle Scholar
  35. MS19.
    I. Morris and P. Shmerkin. On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems. Trans. Amer. Math. Soc., 371 (2019), 1547-1582MathSciNetzbMATHGoogle Scholar
  36. PS08.
    T. Persson and J. Schmeling. Dyadic diophantine approximation and Katok’s horseshoe approximation. Acta Arith., 132 (2008), 205–230MathSciNetzbMATHGoogle Scholar
  37. Pes97.
    Y. Pesin. Dimension theory in dynamical systems, Contemporary Views and Applications. University of Chicago Press, Chicago (1997).zbMATHGoogle Scholar
  38. Pol15.
    M. Pollicott. Analyticity of dimensions for hyperbolic surface diffeomorphisms. Proc. Am. Math. Soc., 143 (2015), 3465–3474MathSciNetzbMATHGoogle Scholar
  39. PU10.
    F. Przytycki and M. Urbański. Conformal Fractals-Ergodic Theory Methods. Cambridge University Press, Cambridge (2010).zbMATHGoogle Scholar
  40. Rue82.
    D. Ruelle. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys., (2)1 (1982), 99–107MathSciNetzbMATHGoogle Scholar
  41. San02.
    F.J. Sánchez-Salas. Ergodic attractors as limits of hyperbolic horseshoes. Ergod. Th. & Dynam. Sys., 22 (2002), 571–589MathSciNetzbMATHGoogle Scholar
  42. San03.
    F.J. Sánchez-Salas. Dimension of Markov towers for non-uniformly expanding one-dimensional systems. Discrete Contin. Dyn. Syst., 9 (2003), 1447–1464MathSciNetzbMATHGoogle Scholar
  43. Sol88.
    B. Solomyak. Measure and dimension for some fractal families. Mathematical Proceedings of the Cambridge Philosophical Society, 124 (1998), 531–546MathSciNetzbMATHGoogle Scholar
  44. VW96.
    A. Verjovsky and H. Wu. Hausdorff dimension of Julia sets of complex Hénon mappings. Ergod. Th. & Dynam. Sys., 16 (1996), 849–861zbMATHGoogle Scholar
  45. Wal82.
    P. Walters. An introduction to ergodic theory. Springer-Verlag, New York (1982).zbMATHGoogle Scholar
  46. Wol00.
    C. Wolf. Dimension of Julia sets of polynomial automorphisms of \(C^2\). Michigan Math. J., 47 (2000), 585–600MathSciNetzbMATHGoogle Scholar
  47. Yan15.
    Y. Yang, Horseshoes for \(C^{1+\alpha }\) mappings with hyperbolic measures. Disc. Contin. Dynam. Sys., 35 (2015), 5133–5152zbMATHGoogle Scholar
  48. You82.
    L. S. Young. Dimension, entropy and Lyapunov exponents. Ergod. Th. & Dynam. Sys., 2 (1982), 109–129MathSciNetzbMATHGoogle Scholar
  49. Zha97.
    Y. Zhang. Dynamical upper bounds for Hausdorff dimension of invariant sets. Ergod. Th. & Dynam. Sys., 17(3) (1997) 739-756MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsEast China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Department of MathematicsSoochow UniversitySuzhouPeople’s Republic of China
  3. 3.Center for Dynamical Systems and Differential EquationSoochow UniversitySuzhouPeople’s Republic of China
  4. 4.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  5. 5.School of Mathematical SciencesSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations