Geometric and Functional Analysis

, Volume 29, Issue 3, pp 659–689 | Cite as

Finitary random interlacements and the Gaboriau–Lyons problem

  • Lewis BowenEmail author


The von Neumann–Day problem asks whether every non-amenable group contains a non-abelian free group. It was answered in the negative by Ol’shanskii in the 1980s. The measurable version (formulated by Gaboriau–Lyons) asks whether every non-amenable measured equivalence relation contains a non-amenable treeable subequivalence relation. This paper obtains a positive answer in the case of arbitrary Bernoulli shifts over a non-amenable group, extending work of Gaboriau–Lyons. The proof uses an approximation to the random interlacement process by random multisets of geometrically-killed random walk paths. There are two applications: (1) the Gaboriau–Lyons problem for actions with positive Rokhlin entropy admits a positive solution, (2) for any non-amenable group, all Bernoulli shifts factor onto each other.

Keywords and phrases

Random interlacement Von Neumann–Day problem Gaboriau–Lyons Non-amenable groups Bernoulli shifts 

Mathematics Subject Classification




  1. D. Aldous and R. Lyons. Processes on unimodular random networks. Electron. J. Probab., (54)12 (2007), 1454–1508MathSciNetCrossRefzbMATHGoogle Scholar
  2. K. Ball. Factors of independent and identically distributed processes with non-amenable group actions. Ergodic Theory Dyn. Syst., (3)25 (2005), 711–730MathSciNetCrossRefzbMATHGoogle Scholar
  3. L. Bowen, D. Hoff, and A. Ioana. von Neumann’s problem and extensions of non-amenable equivalence relations. Groups Geom. Dyn., (2)12 (2018), 399–448MathSciNetCrossRefzbMATHGoogle Scholar
  4. I. Benjamini, A. Nachmias, and Y. Peres. Is the critical percolation probability local? Probab. Theory Relat. Fields, (1-2)149 (2011), 261–269MathSciNetCrossRefzbMATHGoogle Scholar
  5. L. Bowen. Measure conjugacy invariants for actions of countable sofic groups. J. Am. Math. Soc., (1)23 (2010), 217–245MathSciNetCrossRefzbMATHGoogle Scholar
  6. L. Bowen. Weak isomorphisms between Bernoulli shifts. Israel J. Math., 183 (2011), 93–102MathSciNetCrossRefzbMATHGoogle Scholar
  7. L. Bowen. Every countably infinite group is almost Ornstein. In: Dynamical Systems and Group Actions, Volume 567 of Contemporary Mathematics. American Mathematical Society, Providence, RI (2012), pp. 67–78Google Scholar
  8. L. Bowen. Zero entropy is generic. to appear in a special edition of Entropy (2016)Google Scholar
  9. L. Bowen. Examples in the entropy theory of countable group actions. submitted (2017)Google Scholar
  10. L. Bowen. Equivalence relations that act on bundles of hyperbolic spaces. Ergodic Theory Dyn. Syst., (7)38 (2018) 2447–2492MathSciNetCrossRefzbMATHGoogle Scholar
  11. I. Benjamini and O. Schramm. Percolation beyond \(\mathbb{Z}^d\), many questions and a few answers [mr1423907]. In: Selected Works of Oded Schramm. Volume 1, 2, Sel. Works Probab. Stat. Springer, New York (2011), pp. 679–690Google Scholar
  12. I. Chifan and A. Ioana. Ergodic subequivalence relations induced by a Bernoulli action. Geom. Funct. Anal., (1)20 (2010), 53–67MathSciNetCrossRefzbMATHGoogle Scholar
  13. T.M. Cover and J.A. Thomas. Elements of Information Theory, second edition. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ (2006)Google Scholar
  14. A. Drewitz, B. Ráth, and A. Sapozhnikov. An Introduction to Random Interlacements. SpringerBriefs in Mathematics. Springer, Cham (2014)CrossRefzbMATHGoogle Scholar
  15. J. Feldman and C.C. Moore. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Am. Math. Soc., (2)234 (1977), 289–324MathSciNetCrossRefzbMATHGoogle Scholar
  16. D. Gaboriau. Coût des relations d’équivalence et des groupes. Invent. Math., (1)139 (2000), 41–98MathSciNetCrossRefzbMATHGoogle Scholar
  17. D. Gaboriau. Arbres, groupes, quotients. Habilitation Thesis, École Normale Supérieure de Lyon (2002)Google Scholar
  18. D. Gaboriau. Orbit equivalence and measured group theory. In: Proceedings of the International Congress of Mathematicians. Volume III. Hindustan Book Agency, New Delhi (2010), pp. 1501–1527Google Scholar
  19. D. Gaboriau and R. Lyons. A measurable-group-theoretic solution to von Neumann’s problem. Invent. Math., (3)177 (2009), 533–540MathSciNetCrossRefzbMATHGoogle Scholar
  20. N. Gantert and S. Müller. The critical branching Markov chain is transient. Markov Process. Relat. Fields, (4)12 (2006), 805–814MathSciNetzbMATHGoogle Scholar
  21. G. Hjorth. A lemma for cost attained. Ann. Pure Appl. Logic, (1–3)143 (2006), 87–102MathSciNetCrossRefzbMATHGoogle Scholar
  22. C. Houdayer. Invariant percolation and measured theory of nonamenable groups [after Gaboriau-Lyons, Ioana, Epstein]. Astérisque, (348):Exp. No. 1039, ix, 339–374. Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042 (2012)Google Scholar
  23. T. Hutchcroft. Interlacements and the wired uniform spanning forest. Ann. Probab., (2)46 (2018), 1170–1200MathSciNetCrossRefzbMATHGoogle Scholar
  24. D. Kerr. Bernoulli actions of sofic groups have completely positive entropy. Israel J. Math., (1)202 (2014), 461–474MathSciNetCrossRefzbMATHGoogle Scholar
  25. D. Kerr and H. Li. Bernoulli actions and infinite entropy. Groups Geom. Dyn., (3)5 (2011), 663–672MathSciNetCrossRefzbMATHGoogle Scholar
  26. A.S. Kechris and B.D. Miller. Topics in Orbit Equivalence, Volume 1852 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2004)CrossRefzbMATHGoogle Scholar
  27. G. Kun. Expanders have a spanning lipschitz subgraph with large girth. arXiv preprint arXiv:1303.4982 (2013)
  28. G. Levitt. On the cost of generating an equivalence relation. Ergodic Theory Dyn. Syst., (6)15 (1995), 1173–1181MathSciNetCrossRefzbMATHGoogle Scholar
  29. R. Lyons and O. Schramm. Indistinguishability of percolation clusters. Ann. Probab., (4)27 (1999), 1809–1836MathSciNetCrossRefzbMATHGoogle Scholar
  30. A.Y. Ol’shanskiĭ. Geometry of Defining Relations in Groups, Volume 70 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991). Translated from the 1989 Russian original by Yu. A. BakhturinGoogle Scholar
  31. D. Ornstein. Bernoulli shifts with the same entropy are isomorphic. Adv. Math., (1970)4 (1970), 337–352MathSciNetzbMATHGoogle Scholar
  32. D.S. Ornstein and B. Weiss. Ergodic theory of amenable group actions. I. The Rohlin lemma. Bull. Amer. Math. Soc. (N.S.), (1)2 (1980), 161–164Google Scholar
  33. D.S. Ornstein and B. Weiss. Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math., (1987)48, 1–141MathSciNetCrossRefzbMATHGoogle Scholar
  34. M. Pichot. Quasi-périodicité et théorie de la mesure. Ph.D. Thesis, École Normale Supérieure de Lyon (2005)Google Scholar
  35. S. Popa and R. Sasyk. On the cohomology of Bernoulli actions. Ergodic Theory Dyn. Syst., (1)27 (2007), 241–251MathSciNetCrossRefzbMATHGoogle Scholar
  36. B. Seward. Positive entropy actions of countable groups factor onto Bernoulli shifts. to appear in the Journal of the AMS (2015)Google Scholar
  37. B. Seward. Bernoulli shifts with bases of equal entropy are isomorphic. arXiv:1805.08279 (2018)
  38. A.M. Stepin. Bernoulli shifts on groups. Dokl. Akad. Nauk SSSR, (2)223 (1975), 300–302MathSciNetzbMATHGoogle Scholar
  39. A.-S. Sznitman. Vacant set of random interlacements and percolation. Ann. Math. (2), (3)171 (2010), 2039–2087Google Scholar
  40. A. Teixeira. Interlacement percolation on transient weighted graphs. Electron. J. Probab., (54)14 (2009), 1604–1628MathSciNetCrossRefzbMATHGoogle Scholar
  41. J. Tits. Free subgroups in linear groups. J. Algebra, 20 (1972), 250–270MathSciNetCrossRefzbMATHGoogle Scholar
  42. A. Teixeira and J. Tykesson. Random interlacements and amenability. Ann. Appl. Probab., (3)23 (2013), 923–956MathSciNetCrossRefzbMATHGoogle Scholar
  43. W. Woess. Random Walks on Infinite Graphs and Groups, Volume 138. Cambridge university press (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of Texas at AustinAustinUSA

Personalised recommendations