International Journal of Public Health

, Volume 64, Issue 3, pp 387–397 | Cite as

Health inequalities in terms of myocardial infarction and all-cause mortality: a study with German claims data covering 2006 to 2015

  • Siegfried GeyerEmail author
  • Juliane Tetzlaff
  • Sveja Eberhard
  • Stefanie Sperlich
  • Jelena Epping
Original article



International comparisons are suggesting that mortality inequalities may have changed in the last years, although not always into the same direction. Only a few studies examined myocardial infarction (MI). In our study, long-term developments of MI and all-cause mortality were considered by analysing social gradients by income.


German claims data covering 2006 to 2015 (N = 2,474,448) were used with myocardial infarction and all-cause mortality as outcomes. Socio-economic position was depicted by individual income. Health inequalities were measured by hazard ratios between and within income groups for 10 consecutive calendar years.


In men, income gradients of MI and all-cause mortality were decreasing. In women, no income gradients emerged for MI, and they disappeared in mortality. In men, hazard ratios of MI and mortality decreased in the intermediate and in the lowest income thirds, thus leading to a reduction of MI-related health inequalities.


Income inequalities in terms of myocardial infarction and of mortality have narrowed in men, and those in the lowest income third were profiting most. No such changes were observed in women.


Social inequality Health inequalities Long-term trends Myocardial infarction Income Claims data 



The work reported in this paper was funded by the Deutsche Forschungsgemeinschaft (DFG) under project number GE1167/15-1 and by the Allgemeine Ortskrankenkasse Niedersachsen (Local Statutory Health Insurance of Lower Saxony, Germany, no funding number assigned) to Siegfried Geyer.

Compliance with ethical standards

Conflict of interest

S. Geyer has received several project fundings from the Allgemeine Ortskrankenkasse Niedersachsen—AOKN (Local Statutory Health Insurance of Lower Saxony, Germany (no funding number assigned), and from the Stiftung Kinderherzen. For the present paper, he received also funding from the Deutsche Forschungsgemeinschaft (DFG) under project number GE1167/15-1. J. Tetzlaff is partly employed in the project this paper is based on; thus, she is indirectly receiving a salary from the AOKN. S. Sperlich No conflict of interest declared. J. Epping No conflict of interest declared. S. Eberhard She is employed by the AOKN.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable as the study was conducted with routine data.

Supplementary material

38_2019_1224_MOESM1_ESM.pdf (723 kb)
Supplementary material 1 (PDF 723 kb)


  1. Blakely T, Kawachi I, Atkinson J, Fawcett J (2004) Income and mortality: the shape of the association and confounding New Zealand Census-Mortality Study, 1981–1999. Int J Epidemiol 33:874–883. CrossRefGoogle Scholar
  2. Bleich SN, Jarlenski MP, Bell CN, LaVeist TA (2012) Health Inequalities: Trends, Progress, and Policy. Annu Rev Public Health 33:7–40. CrossRefGoogle Scholar
  3. Bucholz EM, Butala NM, Rathore SS, Dreyer RP, Lansky AJ, Krumholz HM (2014) Sex differences in long-term mortality after myocardial infarction: a systematic review circulation 130:757–767. Google Scholar
  4. Bundesamt S (2016) Sozialleistungen; Angaben zur Krankenversicherung (Ergebnisse des Mikrozensus) [Welfare spendings; Data on health insurance (results from the microcensus)]. Fachserie 13, Reihe 11. Statistisches Bundesamt [Federal Statistical Office], WiesbadenGoogle Scholar
  5. Burger O, Baudisch A, Vaupel JW (2012) Human mortality improvement in evolutionary context. Proc Natl Acad Sci. Google Scholar
  6. Dalstra JAA et al (2005) Socioeconomic differences in the prevalence of common chronic diseases: an overview of eight European countries. Int J Epidemiol 34:316–326CrossRefGoogle Scholar
  7. Davidsen M, Bronnum-Hansen H, Jorgensen T, Madsen M, Gerdes LU, Osler M, Schroll M (2001) Trends in incidence, case-fatality and recurrence of myocardial infarction in the Danish MONICA population 1982–1991. Eur J Epidemiol 17:1139–1145CrossRefGoogle Scholar
  8. Davies CA, Dundas R, Leyland AH (2009) Increasing socioeconomic inequalities in first acute myocardial infarction in Scotland, 1990–1992 and 2000–2002. BMC Pub Health. Google Scholar
  9. Dégano IR et al (2015) Twenty-five-year trends in myocardial infarction attack and mortality rates, and case-fatality, in six. Eur Popul Heart 101:1413–1421. Google Scholar
  10. Dong X, Milholland B, Vijg J (2016) Evidence for a limit to human lifespan. Nature. Google Scholar
  11. Epping J, Muschik D, Geyer S (2017) Social inequalities in the utilization of outpatient psychotherapy: analyses of registry data from German statutory health insurance. Int J Equity Health 16:147. CrossRefGoogle Scholar
  12. Freisinger E, Fuerstenberg T, Malyar NM, Wellmann J, Keil U, Breithardt G, Reinecke H (2014) German nationwide data on current trends and management of acute myocardial infarction: discrepancies between trials and real-life. Eur Heart J 35:979–988. CrossRefGoogle Scholar
  13. Geyer S (2011) Income, income, or income? The effects of different income measures on health in a national survey. J Epidemiol Commun Health 65:491–496CrossRefGoogle Scholar
  14. Geyer S, Peter R (2003) Hospital admissions after transition into unemployment Sozial-und. Praventivmedizin 48:106–115Google Scholar
  15. Geyer S, Hemström Ö, Peter R, Vågerö D (2006) Education, income and occupational class cannot be used interchangeably in social epidemiology. Empirical evidence against an unquestioned practice. J Epidemiol Commun Health 60:804–810CrossRefGoogle Scholar
  16. Hallqvist J, Lundberg M, Diderichsen F, Ahlbom A (1998) Socioeconomic differences in risk of myocardial infarction 1971–1994 in Sweden: time trends, relative risks and population attributable risks. Int J Epidemiol 27:410–415CrossRefGoogle Scholar
  17. Helmert U, Maschewsky-Schneider U, Mielck A, Greiser E (1993) Soziale Ungleichheit bei Herzinfarkt und Schlaganfall in West-Deutschland. Sozial- und Präventivmedizin 38:123–132CrossRefGoogle Scholar
  18. Herzstiftung D (2018) Deutscher Herzbericht 2017 [German Heart Report 2017]. FrankfurtGoogle Scholar
  19. Hoffmann F, Icks A (2011) Diabetes prevalence based on health insurance claims: large differences between companies. Diabet Med 28:919–923CrossRefGoogle Scholar
  20. Hoffmann F, Koller D (2017) Verschiedene Regionen, verschiedene Versichertenpopulationen? Soziodemografische und gesundheitsbezogene Unterschiede zwischen Krankenkassen [Different Regions, Differently Insured Populations? Socio-demographic and Health-related Differences Between Insurance Funds]. Gesundheitswesen 79:e1–e9. Google Scholar
  21. Huxley RR, Woodward M (2011) Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet 378:1297–1305CrossRefGoogle Scholar
  22. Igland J, Vollset SE, Nygård OK, Sulo G, Ebbing M, Tell GS (2014) Educational inequalities in acute myocardial infarction incidence in Norway: a nationwide cohort study. PLOS ONE 9:e106898. CrossRefGoogle Scholar
  23. Jaunzeme J, Eberhard S, Geyer S (2013) Wie “repräsentativ” sind GKV-Daten? Demografische und soziale Unterschiede und Ähnlichkeiten zwischen einer GKV-Versichertenpopulation, der Bevölkerung Niedersachsens sowie der Bundesrepublik am Beispiel der AOK Niedersachsen [How “representative” are data from statutory health insurances? Demographic and social differences and similarities between a statutory health insurance population, the population of Lower Saxony and the Federal Republic of Germany at the example of the AOK Niedersachsen]. Bundesgesundheitsblatt 56:447–454CrossRefGoogle Scholar
  24. Ki M, Lee YH, Kim Y-S, Shin J-Y, Lim J, Nazroo J (2017) Socioeconomic inequalities in health in the context of multimorbidity: a Korean panel study. PLOS ONE 12:e0173770. CrossRefGoogle Scholar
  25. Kunst AE et al (2005) Trends in socioeconomic inequalities in self-assessed health in 10 European countries. Int J Epidemiol 34:295–305CrossRefGoogle Scholar
  26. Kuntz B, Lampert T (2014) Rauchverhalten von Erwachsenen in Deutschland: Aktuelle Ergebnisse und Trends [Smoking behaviour of adults in Germany: Current Results and Trends]Google Scholar
  27. Ladwig K-H, Waller C (2014) Geschlechtsspezifische Aspekte bei der koronaren Herzkrankheit [Gender-specific aspects of coronary heart disease]. Bundesgesundheitsblatt—Gesundheitsforschung–Gesundheitsschutz 57:1083–1091. Google Scholar
  28. Lammintausta A et al (2012) Socioeconomic inequalities in the morbidity and mortality of acute coronary events in Finland: 1988–2002. Ann Epidemiol 22:87–93. CrossRefGoogle Scholar
  29. Lugtig P, Das M, Scherpenzeel A (2014) Nonresponse and attrition in a probability-based online panel for the general population. In: Callegaro M, Baker R, Bethlehem J, Göritz AS, Krosnick JA, Lavrakas PJ (eds) Online panel research: a data quality perspective. Wiley, Chichester, pp 135–153CrossRefGoogle Scholar
  30. Lundin A, Falkstedt D, Lundberg I, Hemmingsson T (2014) Unemployment and coronary heart disease among middle-aged men in Sweden: 39 243 men followed for 8 years. Occup Environ Med 71:183–188. CrossRefGoogle Scholar
  31. Mackenbach JP et al (2003) Widening socioeconomic inequalities in mortality in six Western European countries. Int J Epidemiol 32:830–837. CrossRefGoogle Scholar
  32. Mackenbach JP et al (2015) Trends in inequalities in premature mortality: a study of 3.2 million deaths in 13 European countries. J Epidemiol Commun Health 69:207–217. CrossRefGoogle Scholar
  33. Mackenbach JP et al (2016) Changes in mortality inequalities over two decades: register based study of European countries. BMJ 353:i1732. CrossRefGoogle Scholar
  34. Madsen M, Davidsen M, Rasmussen S, Abildstrom SZ, Osler M (2003) The validity of the diagnosis of acute myocardial infarction in routine statistics. J Clin Epidemiol 56:124–130. CrossRefGoogle Scholar
  35. Mortensen LH et al (2016) Shape of the association between income and mortality: a cohort study of Denmark, Finland, Norway and Sweden in 1995 and 2003. BMJ Open 6:e010974. CrossRefGoogle Scholar
  36. Muschik D, Jaunzeme J, Geyer S (2015) Can spouses’ socio-economic information be used to determine the risk of type 2 diabetes in their partners? Examining the consequences of a commonly used practice in studies on social inequalities in health. Int J Public Health 60:953–960CrossRefGoogle Scholar
  37. Osler M, Rostgaard KIA, Sørensen T, Madsen M (1999) The effect of recurrent events on register-based estimates of level and trends in incidence of acute myocardial infarction. J Clin Epidemiol 52:595–600. CrossRefGoogle Scholar
  38. Pötschke-Langer M et al (2015) Tabakatlas Deutschland 2015 [Tobacco Atlas Germany 2015]. Pabst Science Publishers, HeidelbergGoogle Scholar
  39. Renard F, Gadeyne S, Devleesschauwer B, Tafforeau J, Deboosere P (2017) Trends in educational inequalities in premature mortality in Belgium between the 1990s and the 2000s: the contribution of specific causes of deaths. J Epidemiol Commun Health 71:371–380. CrossRefGoogle Scholar
  40. Roelfs DJ, Shor E, Davidson KW, Schwartz JE (2011) Losing life and livelihood: a systematic review and meta-analysis of unemployment and all-cause mortality. Soc Sci Med 72:840–854. CrossRefGoogle Scholar
  41. Schnell R, Trappmann M (2006) Konsequenzen der Panelmortalität im SOEP für Schätzungen der Lebenserwartung [Consequences of panel mortality in the SOEP for estimations of life expectancy] vol Arbeitspapier 2/2006. Zentrum für Quantitative Methoden und Surveyforschung, Universität Konstanz, KonstanzGoogle Scholar
  42. Silventoinen K, Lahelma E (2002) Health inequalities by education and age in four Nordic countries, 1986 and 1994. J Epidemiol Community Health 56:253–258CrossRefGoogle Scholar
  43. Smolina K, Wright FL, Rayner M, Goldacre MJ (2012) Long-term survival and recurrence after acute myocardial infarction in England, 2004 to 2010. Circ: Cardiovasc Qual Outcomes 5:532–540Google Scholar
  44. Stata_Corp. (2015) Stata statistical software: release 14. Stata Corp, College StationGoogle Scholar
  45. Tarkiainen L, Martikainen P, Laaksonen M (2013) The changing relationship between income and mortality in Finland, 1988–2007. J Epidemiol Commun Health 67:21–27. CrossRefGoogle Scholar
  46. Tetzlaff J, Epping J, Sperlich S, Eberhard S, Stahmeyer JT, Geyer S (2018) Widening inequalities in multimorbidity? Time trends among the working population between 2005 and 2015 based on German health insurance data. Int J Equity Health. Google Scholar
  47. Thefeld W, Stolzenberg H, Bellach B-M (1999) Bundes-Gesundheitssurvey: Response, Zusammensetzung der Teilnehmer und Non-Responder-Analyse Das. Gesundheitswesen 61:S57–S61Google Scholar
  48. Tjepkema M, Wilkins R, Long A (2013) Socio-economic inequalities in cause-specific mortality: a 16-year follow-up study. Can J Public Health 104:e472–e478. CrossRefGoogle Scholar

Copyright information

© Swiss School of Public Health (SSPH+) 2019

Authors and Affiliations

  • Siegfried Geyer
    • 1
    Email author
  • Juliane Tetzlaff
    • 1
  • Sveja Eberhard
    • 2
  • Stefanie Sperlich
    • 1
  • Jelena Epping
    • 1
  1. 1.Medical Sociology Unit, Hannover Medical SchoolHannoverGermany
  2. 2.AOK Niedersachsen (Local Statutory Health Insurance of Lower Saxony)HannoverGermany

Personalised recommendations