Advertisement

Genetic variation of Gentianella campestris ssp. campestris in the Northern Alps: how important are population size and isolation?

  • Christoph ReischEmail author
  • Bernhard Hoiß
Original Article
  • 24 Downloads

Abstract

In this study, we analysed the impact of population size and isolation on the genetic variation of the short-lived alpine plant species Gentianella campestris ssp. campestris from two study regions (Allgäu and Karwendel) in the Northern calcareous Alps in Germany. We determined the size and isolation of the study populations and analysed genetic variation using amplified fragment length polymorphisms. Genetic variation of G. campestris ssp. campestris differed significantly between the two study regions. Genetic variation did not depend on population size. However, the level of genetic variation within populations was about three times lower in the Karwendel, where the species is much more isolated than in the Allgäu. Conversely, genetic variation among populations was much stronger in the Karwendel than in the Allgäu. Our results support the observation that the level of genetic variation within populations of alpine plant species may not only be affected by population size, but also by population isolation. Depending on the distance among populations, gene flow by exchange of pollen and seeds triggers the influx of genetic variation, thereby sometimes superimposing the effects of population size. Our results suggest that for seed collections in conservation projects, not only population size, but also isolation should be considered.

Keywords

Alpine plant species AFLP Bavarian Alps Fragmentation Isolation Molecular marker Population size 

Notes

Acknowledgements

We would like to thank Veronika Bäuerlein and Petra Schitko for lab work, Sabine Fischer for her help with the map, Peter Poschlod for lively discussions and the government of the Upper Palatinate for financial support.

Author contributions

CR conceived and designed the study. Both authors contributed to data analysis. CR wrote the first draft of the manuscript, BH contributed to revisions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest in relation with this article.

Supplementary material

35_2019_216_MOESM1_ESM.doc (998 kb)
Supplementary material 1 (DOC 998 KB)

References

  1. Ægisdóttir HH, Kuss P, Stöcklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322CrossRefGoogle Scholar
  2. Aeschimann D, Lauber K, Moser DM, Theurillat JP (2004) Flora alpina, vol 2. Haupt, BernGoogle Scholar
  3. Beatty GE, McEvoy PM, Sweeney O, Provan J (2008) Range-edge effects promote clonal growth in peripheral populations of the one-sided wintergreen Orthilia secunda. Divers Distrib 14:546–555CrossRefGoogle Scholar
  4. BfN (2018) FloraWeb—Daten und Informationen zu Wildpflanzen und zur Vegetation Deutschlands. http://www.floraweb.de/. Accessed 15 Dec 2017
  5. Bonin A, Belleman E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273CrossRefGoogle Scholar
  6. Brütting C, Meyer S, Kühne P, Hensen I, Wesche K (2012) Spatial genetic structure and low diversity of the rare arable plant Bupleurum rotundifolium L. indicate fragmentation in Central Europe. Agric Ecosyst Environ 161:70–77CrossRefGoogle Scholar
  7. Busch V, Reisch C (2016) Population size and land use affect the genetic variation and performance of the endangered plant species Dianthus seguieri ssp. glaber. Conserv Genet 17:425–436.  https://doi.org/10.1007/s10592-015-0794-1 CrossRefGoogle Scholar
  8. Bylebyl K, Poschlod P, Reisch C (2008) Genetic variation of Eryngium campestre L. (Apiaceae) in Central Europe. Mol Ecol 17:3379–3388CrossRefGoogle Scholar
  9. Cruzan M (2001) Population size and fragmentation thresholds for the maintenance of genetic diversity in the herbaceaous endemic Scutellaria montana (Lamiaceae). Evolution 55:1569–1580CrossRefGoogle Scholar
  10. Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350CrossRefGoogle Scholar
  11. Durka W (1999) Genetic diversity in peripheral and subcentral populations of Corrigiola litoralis L. (Illecebraceae). Heredity 83:476–484CrossRefGoogle Scholar
  12. Durka W et al (2017) Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. J Appl Ecol 54:116–126CrossRefGoogle Scholar
  13. Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  14. Eckert CG, Samis E, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central marginal hypothesis and beyond. Mol Ecol 17:1170–1188CrossRefGoogle Scholar
  15. Eckstein RL, O’Neill RA, Danihelka J, Otte A, Köhler W (2006) Genetic structure among and within peripheral and central populations of three endangered floodplain violets. Mol Ecol 15:2367–2379CrossRefGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation studie. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  17. Evans MEK, Dolan RW, Menges ES, Gordon D (2000) Genetic diversity and reproductive biology in Warea carteri (Brassicaceae), a narrowly endemic Florida scrub annual. Am J Bot 87:372–381CrossRefGoogle Scholar
  18. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587Google Scholar
  19. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578.  https://doi.org/10.1111/j.1471-8286.2007.01758.x CrossRefGoogle Scholar
  20. Fischer M, Matthies D (1998) RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Am J Bot 85:811–819CrossRefGoogle Scholar
  21. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Gabel A-R, Sattler J, Reisch C (2017) Genetic variation and performance of the alpine plant species Dianthus callizonus differ in two elevational zones of the. Carpathians Alpine Bot 127:65–74CrossRefGoogle Scholar
  23. García D, Zamora R, Gómez JM, Jordano P, Hódar JA (2000) Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J Ecol 88:436–446CrossRefGoogle Scholar
  24. Greene SL, Kisha TJ, Yu L-X, Parra-Quijano M (2014) Conserving plants in gene banks and nature: investigating complementarity with Trifolium thompsonii morton. PLoS One.  https://doi.org/10.1371/journal.pone.0105145 Google Scholar
  25. Greimler J, Dobes C (2000) High genetic differentiation in relict lowland populations of Gentianella austriaca (A and J Kern) Holub (Gentianaceae). Plant Biol 2:628–637CrossRefGoogle Scholar
  26. Hamilton JA, Eckert CG (2007) Population genetic consequences of geographic disjunction: a prairie plant isolated on Great Lakes alvars. Mol Ecol 16:1649–1660CrossRefGoogle Scholar
  27. Heelemann S, Krug CB, Esler KJ, Poschlod P, Reisch C (2014) Low impact of fragmentation on genetic variation within and between remnant populations of the typical renosterveld species Nemesia barbata in South Africa. Biochem Syst Ecol 54:59–64CrossRefGoogle Scholar
  28. Hensen I, Kilian C, Wagner V, Durka W, Pusch J, Wesche K (2010) Low genetic variability and strong differentiation among isolated populations of the rare steppe grass Stipa capillata L. in Central Europe. Plant Biol 12:526–536CrossRefGoogle Scholar
  29. Honnay O, Jacquemyn H (2007) Susceptibility of common and rare species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831CrossRefGoogle Scholar
  30. Huhta A-P, Lennartsson T, Tuomi J, Rautio P, Laine K (2000) Tolerance of Gentianella campestris in relation to damage intensity: an interplay between apical dominance and herbivory. Evol Ecol 14:373–392CrossRefGoogle Scholar
  31. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267.  https://doi.org/10.1093/molbev/msj030 CrossRefGoogle Scholar
  32. Jacquemyn H, Vandepitte K, Roldán-Ruiz I, Honnay O (2009) Rapid loss of genetic variation in a founding population of Primula elatior (Primulaceae) after colonization. Ann Bot 103:777–783CrossRefGoogle Scholar
  33. Jump AS, Woodward FI (2003) Seed production and population density decline approaching the range-edge of Cirsium species. N Phytol 160:349–358CrossRefGoogle Scholar
  34. Kaulfuß F, Reisch C (2017) Reintroduction of the endangered and endemic plant species Cochlearia bavarica—implications from conservation genetics. Ecol Evol 7:11100–11112CrossRefGoogle Scholar
  35. Königer J, Rebernig CA, Brabec J, Kiehl K, Greimler J (2012) Spatial and temporal determinants of genetic structure in Gentianella bohemica. Ecol Evol 2:363–368CrossRefGoogle Scholar
  36. Kuss P, Pluess AR, Ǽgisdóttir HH, Stöcklin J (2008) Spatial isolation and genetic differentiation in naturally fragmented plant populations of the Swiss Alps. J Plant Ecol 1:149–159CrossRefGoogle Scholar
  37. Lammi A, Siikamäki P, Mustajärvi K (1999) Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13:1069–1078CrossRefGoogle Scholar
  38. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460CrossRefGoogle Scholar
  39. Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413CrossRefGoogle Scholar
  40. Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation. J Ecol 94:942–952CrossRefGoogle Scholar
  41. Lennartsson T, Tuomi J, Nilsson P (1997) Evidence for an evolutionary history of overcompensation in the grassland biennial Gentianella campestris (Gentianaceae). Am Nat 149:1147–1155CrossRefGoogle Scholar
  42. Lennartsson T, Oostermeijer JGB, Van Dijk J, Den Nijs HCM (2000) Ecological significance of floral reproductive traits in Gentianella campestris (Gentianaceae). Basic Appl Ecol 1:69–81CrossRefGoogle Scholar
  43. Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasding usefulness of DNA-based approaches. Conserv Genet 11:355–373CrossRefGoogle Scholar
  44. Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629CrossRefGoogle Scholar
  45. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220Google Scholar
  46. Matthies D, Bräuer I, Maiboom W, Tscharntke T (2004) Population size and the risk of extinction: empirical evidence from rare plants. Oikos 105:481–488CrossRefGoogle Scholar
  47. Oostermeijer JGB (1996) Population size, genetic variation, and related parameters in small, isolated plant populations: a case study. In: Settele J, Margules CR, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer Academic, Dordrecht, pp 61–68CrossRefGoogle Scholar
  48. Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm. J Ecol 94:1233–1248CrossRefGoogle Scholar
  49. Paun O, Schönswetter P, Winkler M, IntraBioDiv-Consortium, Tribsch A (2008) Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol Ecol 17:4263–4275CrossRefGoogle Scholar
  50. Peakall R, Smouse PE (2006) GENALEX 6: genetic analyses in Excel. Population genetic software for teaching and reseach. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  51. Peterson A, Bartish IV, Peterson J (2008) Effects of population size on genetic diversity, fitness and pollinator community composition in fragmented populations of Anthericum liliago L. Plant Ecol 198:101–110CrossRefGoogle Scholar
  52. Pfeifer M, Schatz B, Picó FX, Passalacqua NG, Fay MF, Carey PD, Jeltsch F (2009) Phylogeography and genetic structure of the orchid Himanthoglossum hircinum (L.) Spreng. across its European central-marginal gradient. J Biogeogr 36:2353–2365CrossRefGoogle Scholar
  53. Plenk K, Göd F, Kriechbaum M, Kropf M (2016) Genetic and reproductive characterisation of seasonal flowering morphs of Gentianella bohemica revealed strong reproductive isolation and possible single origin. Plant Biol 18:111–123CrossRefGoogle Scholar
  54. Pluess AR, Stöcklin J (2004) Genetic diversity and fitness in Scabiosa columbaria in the Swiss Jura in relation to population size. Conserv Genet 5:145–156CrossRefGoogle Scholar
  55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  56. Pritchard JK, Wen X, Falush D (2007) Documentation for structure software: version 2.2Google Scholar
  57. Raabova J, Van Rossum F, Jacquemart AL, Raspe O (2015) Population size affects genetic diversity and fine-scale spatial genetic structure in the clonal distylous herb Menyanthes trifoliata perspectives. Plant Ecol Evol Syst 17:193–200.  https://doi.org/10.1016/j.ppees.2015.02.005 CrossRefGoogle Scholar
  58. R-Core-Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing,, Vienna, Austria, http://www.R-project.org/. Accessed 23 Apr 2018
  59. Reed DH, Frankham R (2003) Corelation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  60. Reisch C (2007) Genetic structure of Saxifraga tridactylites (Saxifragaceae) from natural and man-made habitats. Conserv Genet 8:893–902CrossRefGoogle Scholar
  61. Reisch C (2008) Glacial history of Saxifraga paniculata (Saxifragaceae)—molecular biogeography of a disjunct arctic-alpine species in Europe and North America. Biol J Linn Soc 93:385–398CrossRefGoogle Scholar
  62. Reisch C, Bernhardt-Römermann M (2014) The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol 215:1493–1511CrossRefGoogle Scholar
  63. Reisch C, Poschlod P, Wingender R (2003) Genetic variation of Saxifraga paniculata Mill. (Saxifragaceae): molecular evidence for glacial relict endemism in central Europe. Biol J Linn Soc 80:11–21CrossRefGoogle Scholar
  64. Reisch C, Schmid C, Hartig F (2018) A comparison of methods for estimating plant population size. Biodivers Conserv 27:2021–2028CrossRefGoogle Scholar
  65. Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, 2 edn. Kluwer Academic, Dordrecht, pp 1–8Google Scholar
  66. Sagarin RD, Gaines SD (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–147CrossRefGoogle Scholar
  67. Sagarin RD, Gaines SD, Gaylord B (2006) Moving beyond assumptions to understand abundance distributions across the ranges of species. Trend Ecol Evol 21:524–530CrossRefGoogle Scholar
  68. Schönfelder P, Bresinsky A (eds) (1990) Verbreitungsatlas der Farn- und Blütenpflanzen Bayerns. Ulmer, StuttgartGoogle Scholar
  69. Sebald O, Seybold S, Philippi G, Wörz A (1998) Farn- und Blütenpflanzen Baden-Württembergs, vol 7. Ulmer, StuttgartGoogle Scholar
  70. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792CrossRefGoogle Scholar
  71. Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and sed set. Oecologia 12:432–440CrossRefGoogle Scholar
  72. Tausch S, Leipold M, Reisch C, Poschlod P (2015) Genbank Bayern Arche—a contribution to the permanent conservation of threatened plants in. Bavaria Anliegen Nat 37:82–91Google Scholar
  73. Vekemans X (2002) AFLP-surv version 1.0 vol 16. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale. Université Libre de Bruxelles, Bruxelles, BelgiumGoogle Scholar
  74. Vogler F, Reisch C (2013) Vital survivors: low genetic variation but high germination in glacial relict populations of the typical rock plant Draba aizoides. Biodivers Conserv 22:1301–1316CrossRefGoogle Scholar
  75. Wang J, Santiago E, Caballero A (2016) Prediction and estimation of effective population size. Heredity 117:193–206CrossRefGoogle Scholar
  76. Whitlock R, Hipperson H, Thompson DBA, Butlin RK, Burke T (2016) Consequences of in-situ strategies for the conservation of plant genetic diversity. Biol Conserv 203:134–142CrossRefGoogle Scholar
  77. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trend Ecol Evol 11:413–418CrossRefGoogle Scholar

Copyright information

© Swiss Botanical Society 2019

Authors and Affiliations

  1. 1.Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
  2. 2.Bavarian Academy for Nature Conservation and Landscape ManagementLauffenGermany

Personalised recommendations