Advertisement

Step Response-Based Identification of Fractional Order Time Delay Models

  • Salim AhmedEmail author
Article

Abstract

An identification method for fractional order models with time delay is presented. The proposed method, based on the output error optimization, simultaneously estimates model orders, coefficients and time delay from a single noisy step response. Analytical expressions for logarithmic derivatives of the step input are derived to evaluate the Jacobian and the Hessian required for the Newton’s algorithm for optimization. A simplified initialization procedure is also outlined that assumes an integral initial order and uses estimated coefficients as the initial guess. Simulation results are presented to demonstrate the efficacy of the proposed approach. Convergence of the Newton’s method and the Gauss–Newton scheme are also studied in simulation. Identification results from noisy step response data for time delay models with different structures are presented.

Keywords

Step response Fractional order Parameter estimation Time delay Optimization 

Notes

Acknowledgements

The author acknowledges the financial supports from Research and Development Corporation (RDC) of Newfoundland and Labrador and Natural Sciences and Engineering Research Council (NSERC) of Canada.

Compliance with Ethical Standards

Conflicts of interest

The author declares that there is no conflict of interest.

Human Participants

The study does not involve any human participants and/or animal. The manuscript has not been published previously (partly or in full).

References

  1. 1.
    S. Ahmed, Parameter and delay estimation of fractional order models from step response, in 9th IFAC Symposium on Advanced Control of Chemical Processes, Whistler, BC, Canada (2015), pp. 942–947Google Scholar
  2. 2.
    S. Ahmed, B. Huang, S.L. Shah, Parameter and delay estimation of continuous-time models using a linear filter. J. Process Control 16(4), 323–331 (2006)CrossRefGoogle Scholar
  3. 3.
    M. Aoun, R. Malti, F. Levron, A. Oustaloup, Synthesis of fractional Laguerre basis for system approximation. Automatica 43, 1640–1648 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    D. Babusci, G. Dattoli, On the logarithm of the derivative operator arXiv e-prints (2011)Google Scholar
  5. 5.
    A. Benchellal, T. Poinot, C. Trigeassou, Approximation and identification of diffusive interfaces by fractional systems. Signal Process. 86(10), 2712–2727 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Y. Chen, I. Petras, D. Xue, Fractional order control—A tutorial, in 2009 American Control Conference, St. Louis, USA (2009), pp. 1397–1411Google Scholar
  7. 7.
    E.K. Chong, S.H. Zak, An Introduction to Optimization (Wiley, New York, 1996)zbMATHGoogle Scholar
  8. 8.
    O. Cois, A. Oustaloup, T. Poinot, J. Battaglia, Fractional state variable filter for system identification by fractional model, in European Control Conference, Porto, Portugal (2001)Google Scholar
  9. 9.
    J.E. Diamessis, A new method for determining the parameters of physical systems, in Proceedings of the IEEE (1965), pp. 205–206CrossRefGoogle Scholar
  10. 10.
    S.M. Fahim, S. Ahmed, S.A. Imtiaz, Fractional order model identification using the sinusoidal input. ISA Trans. 83, 35–41 (2018).  https://doi.org/10.1016/j.isatra.2018.09.009 CrossRefGoogle Scholar
  11. 11.
    R. Fletcher, Practical Methods of Optimization. Vol. 1: Unconstrained Optimization (Wiley, New York, 1980)zbMATHGoogle Scholar
  12. 12.
    J.D. Gabano, T. Poinot, H. Kanoun, Identification of a thermal system using continuous linear parameter-varying fractional modelling. IET Control Theory Appl. 5(7), 889–899 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    E.V. Hayngworth, K. Goldbe, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, chap. Bernoulli and Euler Polynomials- Riemann Zeta Function, U.S. Department of Commerce, NIST, Washington DC (1972) pp. 803–820Google Scholar
  14. 14.
    J. Hines, Operator mathematics II. Math. Mag. 28(4), 199–207 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    K. Leyden, B. Goodwine, Fractional-order system identification for health monitoring. Nonlinear Dyn. 92(3), 1317–1334 (2018)CrossRefGoogle Scholar
  16. 16.
    B. Lurie, Three-parameter tunable tilt-integral-derivative (TID) controller. US Patent 5371670 (1994)Google Scholar
  17. 17.
    R. Malti, S. Victor, A. Oustaloup, Advances in system identification using fractional models. J. Comput. Nonlinear Dyn. 3(2), 0214011–7 (2008)Google Scholar
  18. 18.
    R. Malti, S. Victor, A. Oustaloup, H. Garnier, An optimal instrumental variable method for continuous-time fractional order model identification, in Proceedings 17th IFAC World Congress, Seoul, Korea (2008), pp. 14379–14384Google Scholar
  19. 19.
    A.K. Mani, M.D. Narayanan, M. Sen, Parametric identification of fractional-order nonlinear systems. Nonlinear Dyn. 93(2), 945–960 (2018)zbMATHCrossRefGoogle Scholar
  20. 20.
    R. Mansouri, M. Bettayeb, S. Djennoune, Approximation of high order integer systems by fractional order reduced parameter models. Math. Comput. Model. 51, 53–62 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    W.F. Mascarenhas, Newton iterates can converge to non-stationary points. Math. Program. Ser. A 112, 327–334 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    C. Monje, Y. Chen, B. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-order Systems and Controls (Springer, London, 2010)zbMATHCrossRefGoogle Scholar
  23. 23.
    M. Muddu, A. Narang, S. Patwardhan, Development of ARX models for predictive control using fractional order and orthonormal basis filter parameterization. Ind. Eng. Chem. Res. 48(19), 8966–8979 (2009)CrossRefGoogle Scholar
  24. 24.
    C.I. Muresan, S. Folea, I.R. Birs, C. Ionescu, A novel fractional-order model and controller for vibration suppression in flexible smart beam. Nonlinear Dyn. 93(2), 525–541 (2018).  https://doi.org/10.1007/s11071-018-4207-0 CrossRefGoogle Scholar
  25. 25.
    A. Narang, S.L. Shah, T. Chen, Continuous-time model identification of fractional-order models with time delays. IET Control Theory Appl. 15(5), 900–912 (2010)MathSciNetGoogle Scholar
  26. 26.
    P. Nazarian, M. Haeri, M.S. Tavazoei, Identifiability of fractional-order systems using input output frequency contents. ISA Trans. 49, 207–214 (2010)CrossRefGoogle Scholar
  27. 27.
    K. Oldham, J. Myland, J. Spanier, An Atlas of Functions, 2nd edn. (Springer, New York, 2000)zbMATHGoogle Scholar
  28. 28.
    K. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)zbMATHGoogle Scholar
  29. 29.
    A. Oustaloup, X. Moreau, M. Nouillant, The CRONE suspension. Control Eng. Pract. 4(8), 1101–1108 (1996)CrossRefGoogle Scholar
  30. 30.
    I. Podlubny, Fractional order systems and \( {PI}^{\lambda } {D}^{\mu }\) controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    T. Poinot, J.C. Trigeassou, Identification of fractional systems using an output-error technique. Nonlinear Dyn. 38(1), 133–154 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    H. Raynaud, A. ZergaInoh, State-space representation for fractional order controllers. Automatica 36, 1017–1021 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    L. Sersour, T. Djamah, M. Bettayeb, Nonlinear system identification of fractional wiener models. Nonlinear Dyn. 92(4), 1493–1505 (2018).  https://doi.org/10.1007/s11071-018-4142-0 CrossRefGoogle Scholar
  34. 34.
    M. Tavakoli-Kakhki, M. Haeri, M. Tavazoei, Simple fractional order model structures and their applications in control system design. Eur. J. Control 16(6), 680–694 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    M. Tavakoli-Kakhki, M. Haeri, M.S. Tavazoei, Over- and under-convergent step responses in fractional-order transfer functions. Trans. Inst. Meas. Control 32(4), 376–394 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Tavakoli-Kakhki, M. Tavazoei, Estimation of the order and parameters of fractional order models from a noisy step response data. J. Dyn. Syst. Meas. Control 136(3), 0310201–6 (2014)CrossRefGoogle Scholar
  37. 37.
    M.S. Tavazoei, Overshoot in the step response of fractional-order control systems. J. Process Control 22, 90–94 (2012)CrossRefGoogle Scholar
  38. 38.
    D. Valerio, M.D. Ortigueira, J.S. da Costa, Identifying a transfer function from a frequency response. J. Comput. Nonlinear Dyn. 3(2), 0212071–7 (2008)CrossRefGoogle Scholar
  39. 39.
    S. Victor, R. Malti, Model order identification for fractional-order models, in European Control Conference, Zurich, Switzerland (2013), pp. 3470–3475Google Scholar
  40. 40.
    S. Victor, R. Malti, H. Garnier, A. Oustaloup, Parameter and differential order estimation of fractional-order models. Automatica 49, 926–935 (2013)zbMATHCrossRefGoogle Scholar
  41. 41.
    P.C. Young, Optimal IV identification and estimation of continuous-time TF models, in IFAC World Congress, Barcelona, Spain (2002), pp. 337–358Google Scholar
  42. 42.
    L. Yuan, Q. Yang, C. Zeng, Chaos detection and parameter identification in fractional-order chaotic systems with delay. Nonlinear Dyn. 73(1), 439–448 (2013)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Centre for Risk, Integrity and safety Engineering (C-RISE), Department of Process EngineeringMemorial UniversitySt. John’sCanada

Personalised recommendations