Robust Variable Step-Size Diffusion Sign-Error Algorithm Over Adaptive Networks

  • Pengwei Wen
  • Jiashu ZhangEmail author


Although the diffusion sign-error (DSE-LMS) algorithm is robust against impulsive noise, it has a slow convergence rate due to the application of the sign operation. Therefore, this study proposes a robust variable step-size DSE-LMS algorithm to solve the conflict between fast convergence rate and low misadjustment in impulsive noise environments. The step size is obtained by minimizing the l1-norm of the noiseless intermediate posterior error at each node, resulting in improved tracking capability of the proposed algorithm. Furthermore, the mean-square performance is analyzed based on the principle of energy conservation. The simulation results demonstrate that the proposed algorithm distinctly outperforms the existing algorithms in terms of both steady-state error and convergence rate in impulsive noise environments.


Diffusion strategy Sign-error algorithm Impulsive noise 



This work was supported by the Fund for the National Nature Science Foundation of China (Grant: 61671392).


  1. 1.
    M.Z.A. Bhotto, A. Antoniou, A family of shrinkage adaptive-filtering algorithms. IEEE Trans. Signal Process. 61(7), 1689–1697 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M.Z.A. Bhotto, M.O. Ahmad, M.N.S. Swamy, Robust shrinkage affine-projection sign adaptive-filtering algorithms for impulsive noise environments. IEEE Trans. Signal Process. 62(13), 3349–3359 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    N. Bogdanović, J. Plata-Chaves, K. Berberidis, Distributed incremental-based LMS for node-specific adaptive parameter estimation. IEEE Trans. Signal Process. 62(20), 5382–5397 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    F.S. Cattivelli, A.H. Sayed, Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    F.S. Cattivelli, A.H. Sayed, Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Autom. Control 55(9), 2069–2084 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    F.S. Cattivelli, A.H. Sayed, Modeling bird flight formations using diffusion adaptation. IEEE Trans. Signal Process. 59(5), 2038–2051 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    F.S. Cattivelli, C.G. Lopes, A.H. Sayed, Diffusion recursive least squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56(5), 1865–1877 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Chen, A.H. Sayed, On the learning behavior of adaptive networks–Part I: transient analysis. IEEE Trans. Inf. Theory 61(6), 3487–3517 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Chen, C. Richard, A.H. Sayed, Multitask diffusion LMS over networks. IEEE Trans. Signal Process. 62(16), 4129–4144 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Estrin, L. Girod, G. Pottie, M. Srivastava, Instrumenting the world with wireless sensor networks, in Proceedings of IEEE International Conference Acoustics, Speech, Signal Processing (ICASSP), 2001, vol. 4, pp. 2033C2036Google Scholar
  11. 11.
    T. Gross, H. Sayama, Adaptive networks (Springer, Berlin, 2009), pp. 1–8CrossRefGoogle Scholar
  12. 12.
    J.H. Kim, J.H. Chang, S.W. Nam, Sign subband adaptive filter with l1-norm minimisation-based variable step-size. Electro. Lett. 49(21), 1325–1326 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Li, J. Chambers, C. Lopes, A.H. Sayed, Distributed estimation over an adaptive incremental network based on the affine projection algorithm. IEEE Trans. Signal Process. 58(1), 151–164 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    C.G. Lopes, A.H. Sayed, Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55(8), 4064–4077 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Ni, J. Chen, X. Chen, Diffusion sign-error LMS algorithm: formulation and stochastic behavior analysis. Signal Process. 128, 142–149 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Paleologu, J. Benesty, S. Ciochina, A robust variable forgetting factor recursive least-squares algorithm for system identification. IEEE Signal Process. Lett. 15, 597–600 (2008)CrossRefGoogle Scholar
  18. 18.
    A.H. Sayed, S.Y. Tu, J. Chen, X. Zhao, Z. Towfic, Diffusion strategies for adaptation and learning over networks. IEEE Signal Process. Mag. 30(3), 155–171 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Wen, J. Zhang, Robust variable step-size sign subband adaptive filter algorithm against impulsive noise. Signal Process. 139, 110–115 (2017)CrossRefGoogle Scholar
  20. 20.
    P. Wen, J. Zhang, A novel variable step-size normalized subband adaptive filter based on mixed error cost function. Signal Process. 138, 48–52 (2017)CrossRefGoogle Scholar
  21. 21.
    P. Wen, J. Zhang, Variable step-size diffusion normalized sign-error algorithm. Circuits Syst Signal Process. 37(11), 4993–5004 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    P. Wen, J. Zhang, Widely linear complex-valued diffusion subband adaptive filter algorithm. IEEE Trans. Signal Inf. Process. Over Netw. 5(2), 248–257 (2019)MathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Wen, S. Zhang, J. Zhang, A novel subband adaptive filter algorithm against impulsive noise and it’s performance analysis. Signal Process. 127, 282–287 (2016)CrossRefGoogle Scholar
  24. 24.
    P. Wen, J. Zhang, S. Zhang et al., Augmented complex-valued normalized subband adaptive filter: algorithm derivation and analysis. J. Frankl. Inst. 356(3), 1604–1622 (2019)MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Zhang, J. Zhang, New steady-state analysis results of variable step-size LMS algorithm with different noise distributions. IEEE Signal Process. Lett. 21(6), 653–657 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Zhang, W.X. Zheng, Mean-square analysis of multi-sampled multiband-structured subband filtering algorithm. IEEE Trans. Circuits Syst. I Regul. Pap. 66(3), 1051–1062 (2019)MathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Zhang, J. Zhang, H. Han, Robust shrinkage normalized sign algorithm in an impulsive noise environment. IEEE Trans. Circuits Syst. II Express Briefs 64(1), 91–95 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Zhang, W.X. Zheng, J. Zhang, H. Han, A family of robust M-shaped error weighted LMS algorithms: performance analysis and echo cancelation application. IEEE Access 5, 14716–14727 (2017)CrossRefGoogle Scholar
  29. 29.
    X. Zhao, A.H. Sayed, Performance limits for distributed estimation over LMS adaptive networks. IEEE Trans. Signal Process. 60(10), 5107–5124 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Zhao, Z. Zheng, Bias-compensated affine-projection-like algorithms with noisy input. Electron. Lett. 52(9), 712–714 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringZhongyuan University of TechnologyZhengzhouChina
  2. 2.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina

Personalised recommendations