Advertisement

Normalized Nonlinear Semiempirical MOST Model Used in Monolithic RF Class A-to-C PAs

  • Rafaella FiorelliEmail author
  • Nicolás Barabino
  • Fernando Silveira
  • Eduardo Peralías
Article
  • 6 Downloads

Abstract

This paper presents a simple but accurate normalized nonlinear large-signal semiempirical MOS transistor model to be used in monolithic RF Class A-to-C PAs. MOS transistor characteristics, saved in lookup tables, are extracted for different PVT corners, allowing the study of the PA performance spread. Model accuracy is ratified by the excellent matching obtained when comparing data algebraically calculated with electrical simulations of hundreds of PAs, and with the measurement data of a fabricated 2.4 GHz PA.

Keywords

Nonlinear model Semiempirical Class A-to-C RF PA Monolithic MOS transistor RF Low power Power amplifier 

Notes

Acknowledgements

This work was supported in part by FEDER funds through the Andalusian Government Project P09-TIC-5386, Spanish Government MAE-AECID grants; Uruguayan ANII Grant BE-POS-2010-2442 and MOSIS Research Program.

References

  1. 1.
    N. Barabino, R. Fiorelli, F. Silveira, Efficiency based design flow for fully-integrated class C RF power amplifiers in nanometric CMOS, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (2010), pp. 2223–2226.  https://doi.org/10.1109/ISCAS.2010.5537207
  2. 2.
    C. Bernier, F. Hameau, G. Billiot, E. de Foucauld, S. Robinet, D. Lattard, J. Durupt, F. Dehmas, L. Ouvry, P. Vincent, An ultra low power SoC for 2.4 GHz IEEE802.15.4 wireless communications, in 34th European Solid-State Circuits Conference (ESSCIRC) (2008), pp. 426–429.  https://doi.org/10.1109/ESSCIRC.2008.4681883
  3. 3.
    C. Bowick, RF Circuit Design (Elsevier, Burlington, 2007)Google Scholar
  4. 4.
    P. Choi, H.C. Park, S. Kim, S. Park, I. Nam, T.W. Kim, S. Park, S. Shin, M.S. Kim, K. Kang, Y. Ku, H. Choi, S.M. Park, K. Lee, An experimental coin-sized radio for extremely low-power WPAN (IEEE802.15.4) application at 2.4 GHz. IEEE J. Solid-State Circuits 38(12), 2258–2268 (2003).  https://doi.org/10.1109/JSSC.2003.819083 CrossRefGoogle Scholar
  5. 5.
    S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd edn. (Artech House, Norwood, 2006). ISBN: 9781596930186 Google Scholar
  6. 6.
    P. Dal Fabbro, M. Kayal, Design of the dynamic supply CMOS RF power amplifier, in Linear CMOS RF Power Amplifiers for Wireless Applications, ed. by P. Dal Fabbro, M. Kayal (Springer, Berlin, 2010), pp. 17–38.  https://doi.org/10.1007/978-90-481-9361-5 CrossRefGoogle Scholar
  7. 7.
    R. Fiorelli, E. Peralias, F. Silveira, LC-VCO design optimization methodology based on the gm/ID ratio for nanometer CMOS technologies. IEEE Trans. Microw. Theory Tech. 59(7), 1822–1831 (2011).  https://doi.org/10.1109/TMTT.2011.2132735 CrossRefGoogle Scholar
  8. 8.
    R. Fiorelli, E. Peralías, Semi-empirical RF MOST model for CMOS 65 nm technologies: theory, extraction method and validation. Integr. VLSI J. 52(1), 228–236 (2016).  https://doi.org/10.1016/j.vlsi.2015.07.018 CrossRefGoogle Scholar
  9. 9.
    R. Fiorelli, F. Silveira, E. Peralías, MOST moderate-weak-inversion region as the optimum design zone for CMOS 2.4-GHz CS-LNAs. IEEE Trans. Microw. Theory Tech. 62(3), 556–566 (2014).  https://doi.org/10.1109/TMTT.2014.2303476 CrossRefGoogle Scholar
  10. 10.
    R. Gupta, B.M. Ballweber, D.J. Allstot, Design and optimization of CMOS RF power amplifiers. IEEE J. Solid-State Circuits 36(2), 166–175 (2001).  https://doi.org/10.1109/4.902757 CrossRefGoogle Scholar
  11. 11.
    P.G.A. Jespers, B. Murmann, Systematic Design of Analog CMOS Circuits (Cambridge University Press, Cambridge, 2017).  https://doi.org/10.1017/9781108125840 CrossRefzbMATHGoogle Scholar
  12. 12.
    Y.J. Kim, I.-C. Hwang, D. Baek, A switchless Zigbee frontend transceiver with matching component sharing of LNA and PA. IEEE Microwave Wirel. Compon. Lett. 20(9), 516–518 (2010).  https://doi.org/10.1109/LMWC.2010.2056676 CrossRefGoogle Scholar
  13. 13.
    W. Kluge, F. Poegel, H. Roller, M. Lange, T. Ferchland, L. Dathe, D. Eggert, A fully integrated 2.4-GHz IEEE 802.15.4-compliant transceiver for ZigBee(TM) applications. IEEE J. Solid-State Circuits 41(12), 2767–2775 (2006).  https://doi.org/10.1109/JSSC.2006.884802 CrossRefGoogle Scholar
  14. 14.
    W. Liu, J. Chen, X. Liu, H. Wang, N. Wu, A 2.4 GHz low power CMOS transceiver for LR-WPAN applications. Sci. China Inf. Sci. 57(8), 1–13 (2014).  https://doi.org/10.1007/s11432-013-4981-8 CrossRefGoogle Scholar
  15. 15.
    T.K. Nguyen, V. Krizhanovskii, J. Lee, S.K. Han, S.G. Lee, N.S. Kim, C.S. Pyo, A low-power RF direct-conversion receiver/transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18-μm CMOS technology. IEEE Trans. Microw. Theory Tech. 54(12), 4062–4071 (2006).  https://doi.org/10.1109/TMTT.2006.885556 CrossRefGoogle Scholar
  16. 16.
    A. Raghavan, N. Srirattana, J. Laskar, Modeling and Design Techniques for RF Power Amplifiers (Wiley-IEEE Press, Hoboken, 2008).  https://doi.org/10.1002/9780470228319 CrossRefGoogle Scholar
  17. 17.
    J. Ramos, K. Francken, G.G.E. Gielen, M.S.J. Steyaert, An efficient, fully parasitic-aware power amplifier design optimization tool. IEEE Trans. Circuits Syst. I Regul. Pap. 52(8), 1526–1534 (2005).  https://doi.org/10.1109/TCSI.2005.851677 CrossRefGoogle Scholar
  18. 18.
    N. Saputra, J. Long, A fully-integrated, short-range, low data rate FM-UWB transmitter in 90 nm CMOS. IEEE J. Solid-State Circuits 46(7), 1627–1635 (2011).  https://doi.org/10.1109/JSSC.2011.2144050 CrossRefGoogle Scholar
  19. 19.
    A. Shameli, P. Heydari, Ultra-low power RFIC design using moderately inverted MOSFETs: an analytical/experimental study, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (2006), pp. 470–473.  https://doi.org/10.1109/RFIC.2006.1651193
  20. 20.
    F. Silveira, D. Flandre, P.G.A. Jespers, A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA. IEEE J. Solid-State Circuits 31(9), 1314–1319 (1996).  https://doi.org/10.1109/4.535416 CrossRefGoogle Scholar
  21. 21.
    H. Solar-Ruiz, Roc Berenguer Pérez, Linear CMOS RF Power Amplifiers: A Complete Design Workflow (Springer, Berlin, 2014).  https://doi.org/10.1007/978-1-4614-8657-2 CrossRefzbMATHGoogle Scholar
  22. 22.
    A. Zolfaghari, B. Razavi, A low-power 2.4-GHz transmitter/receiverCMOS IC. IEEE J. Solid-State Circuits 38(2), 176–183 (2003).  https://doi.org/10.1109/JSSC.2002.807580 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Microelectrónica de Sevilla (IMSE-CNM)Consejo Superior de Investigaciones Científicas and Universidad de SevillaSevilleSpain
  2. 2.Instituto de Ingeniería EléctricaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations