A Power-Efficient Configurable FSK–OOK Transmitter with Scalable Data Rate for Wireless Medical Applications

  • Tayebeh AzadmousaviEmail author
  • Esmaeil Najafi Aghdam
  • Javad Frounchi


This paper presents a 922 MHz power-efficient configurable frequency-shift keying–on–off keying (FSK–OOK) phase-locked loop (PLL)-based transmitter. The proposed transmitter works as a multimode structure with configurable data rate and output power. In OOK modulation, by duty cycle adjustment of input data and producing return-to-zero data (RZ-data) by a simple circuit, the data rate can be scaled with power consumption. This implies that any desired level of output power can be transmitted with different power consumption according to the power budget. The transmitter benefits from a new phase frequency detector, an improved charge pump and a low-power voltage-controlled oscillator. The proposed structure represents data rate of 0.24–2.4 Mb/s in OOK mode and 1.8 Mb/s in FSK mode, and it can deliver output power level from − 19.71 to 0.53 dBm. The efficiency of the transmitter at RZ–OOK modulation with data rate of 2.4 Mb/s and output power of 0.53 dBm is 57.25%. Also, the efficiency of transmitter in FSK modulation is 22.1%. The post-layout simulation results in 0.18 µm RF CMOS process are obtained and verify the effectiveness of the proposed circuit.


Transmitter PLL RZ–OOK Data rate Low power Configurable 



  1. 1.
    K. Abdelhalim, L. Kokarovtseva, J.L.P. Velazquez, R. Genov, 915-MHz FSK/OOK wireless neural recording SoC with 64 mixed-signal FIR filters. IEEE J. Solid-State Circ. 48(10), 2478–2493 (2013)CrossRefGoogle Scholar
  2. 2.
    T. Azadmousavi, E.N. Aghdam, Adaptive body biasing circuit for reliability and variability compensation of a low power RF amplifier. IEEE Trans. Dev. Mater. Reliab. 19(1), 226–232 (2019)CrossRefGoogle Scholar
  3. 3.
    T. Azadmousavi, E.N. Aghdam, A low power current-reuse LC-VCO with an adaptive body-biasing technique. AEU-Int J. Electron. Commun. 89, 56–61 (2018)CrossRefGoogle Scholar
  4. 4.
    T. Azadmousavi, M. Azadbakht, E.N. Aghdam, J. Frounchi, A novel zero dead zone PFD and efficient CP for PLL applications. Analog Integr. Circ. Signal Process. 95(1), 83–91 (2018)CrossRefGoogle Scholar
  5. 5.
    M. Azin, D.J. Guggenmos, S. Barbay, R.J. Nudo, P. Mohseni, A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface. IEEE J. Solid-State Circ. 46(4), 731–745 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Ba, M. Vidojkovic, K. Kanda, N.F. Kiyani, M. Lont, X. Huang, X. Wang, C. Zhou, Y.-H. Liu, M. Ding, A 0.33 nJ/bit IEEE802. 15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications. IEEE J. Biomed. Health Inf. 19(3), 920–929 (2015)CrossRefGoogle Scholar
  7. 7.
    R. Bashirullah, Wireless implants. IEEE Microw. Mag. 11(7), S14–S23 (2010)CrossRefGoogle Scholar
  8. 8.
    M.S. Chae, Z. Yang, M.R. Yuce, L. Hoang, W. Liu, A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 312–321 (2009)CrossRefGoogle Scholar
  9. 9.
    W.-M. Chen, H. Chiueh, T.-J. Chen, C.-L. Ho, C. Jeng, M.-D. Ker, C.-Y. Lin, Y.-C. Huang, C.-W. Chou, T.-Y. Fan, A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control. IEEE J. Solid-State Circ. 49(1), 232–247 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Cho, A.P. Chadrakasan, A 6.5-GHz energy-efficient BFSK modulator for wireless sensor applications. IEEE J. Solid-State Circ. 39(5), 731–739 (2004)CrossRefGoogle Scholar
  11. 11.
    J. Dong, H. Jiang, K. Yang, Z. Weng, F. Li, J. Wei, Y. Ning, X. Chen, Z. Wang, A wireless body sound sensor with a dedicated compact chipset. Circuits Syst. Signal Process. 36(6), 2341–2359 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    O.Z. Gall, C. Meng, H. Bhamra, H. Mei, S.W. John, P.P. Irazoqui, A batteryless energy harvesting storage system for implantable medical devices demonstrated in situ. Circuits Syst. Signal Process. 38(3), 1360–1373 (2019)CrossRefGoogle Scholar
  13. 13.
    R. Harrison, P. Watkins, R. Kier, R. Lovejoy, D. Black, R. Normann, F. Solzbacher, A low-power integrated circuit for a wireless 100-electrode neural recording system, in 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers 2006 (IEEE), pp. 2258–2267Google Scholar
  14. 14.
    S. Heinen, K. Hadjizada, U. Matter, W. Geppert, V. Thomas, S. Weber, S. Beyer, J. Fenk, E. Matschke, A 2.7 V 2.5 GHz bipolar chipset for digital wireless communication, in 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers 1997 (IEEE), pp. 306–307Google Scholar
  15. 15.
    M.S. Jahan, J. Langford, J. Holleman, A low-power FSK/OOK transmitter for 915 MHz ISM band, in 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 2015 (IEEE), pp. 163–166Google Scholar
  16. 16.
    H. Kassiri, R. Pazhouhandeh, N. Soltani, M.T. Salam, P. Carlen, J.L.P. Velazquez, R. Genov, 27.3 All-wireless 64-channel 0.013 mm 2/ch closed-loop neurostimulator with rail-to-rail DC offset removal, in 2017 IEEE International Solid-State Circuits Conference (ISSCC) 2017 (IEEE), pp. 452–453Google Scholar
  17. 17.
    S.J. Kim, C.S. Park, S.-G. Lee, A 2.4-GHz ternary sequence spread spectrum OOK transceiver for reliable and ultra-low power sensor network applications. IEEE Trans. Circuits Syst. I Regul. Papers 64(11), 2976–2987 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    S.B. Lee, H.-M. Lee, M. Kiani, U.-M. Jow, M. Ghovanloo, An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans. Biomed. Circuits Syst. 4(6), 360–371 (2010)CrossRefGoogle Scholar
  19. 19.
    J. McDonald, S. Dean, D. Niewolny, D. Garcia, N. Chhabra, L. Chang, Integrated circuits for implantable medical devices. Document Number: ICIMDOVWP REV0, Freescale (2011)Google Scholar
  20. 20.
    A. Moradi, M. Sawan, An energy-efficient high data-rate 915 MHz FSK wireless transmitter for medical applications. Analog Integr. Circ. Signal Process. 83(1), 85–94 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Paidimarri, P.M. Nadeau, P.P. Mercier, A.P. Chandrakasan, A 2.4 GHz multi-channel FBAR-based transmitter with an integrated pulse-shaping power amplifier. IEEE J. Solid-State Circ. 48(4), 1042–1054 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Pandey, B.P. Otis, A Sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication. IEEE J. Solid-State Circ. 46(5), 1049–1058 (2011)CrossRefGoogle Scholar
  23. 23.
    V. Peiris, C. Arm, S. Bories, S. Cserveny, F. Giroud, P. Graber, S. Gyger, E. Le Roux, T. Melly, M. Moser, A 1 V 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF transceiver SoC in standard digital 0.18/spl mu/m CMOS, in ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005. 2005 (IEEE), pp. 258–259Google Scholar
  24. 24.
    P. Quinlan, P. Crowley, M. Chanca, S. Hudson, B. Hunt, K. Mulvaney, G. Retz, C.E. O’Sullivan, P. Walsh, A multimode 0.3-200-kb/s transceiver for the 433/868/915-MHz bands in 0.25-/spl mu/m CMOS. IEEE J. Solid-State Circ. 39(12), 2297–2310 (2004)CrossRefGoogle Scholar
  25. 25.
    B. Razavi, RF transmitter architectures and circuits. In: Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No. 99CH36327) 1999 (IEEE) pp. 197–204Google Scholar
  26. 26.
    M. Stoopman, K. Philips, W.A. Serdijn, An RF-powered DLL-based 2.4-GHz transmitter for autonomous wireless sensor nodes. IEEE Trans. Microw. Theory Tech. 65(7), 2399–2408 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Taghivand, K. Aggarwal, Y. Rajavi, A.S. Poon, An energy harvesting 2 × 2 60 GHz transceiver with scalable data rate of 38–2450 Mb/s for near-range communication. IEEE J. Solid-State Circ. 50(8), 1889–1902 (2015)CrossRefGoogle Scholar
  28. 28.
    J.G. Webster, Medical Instrumentation: Application and Design (Wiley, Hoboken, 2009)Google Scholar
  29. 29.
    X.P. Yu, M.A. Do, W.M. Lim, K.S. Yeo, J.-G. Ma, Design and optimization of the extended true single-phase clock-based prescaler. IEEE Trans. Microw. Theory Tech. 54(11), 3828–3835 (2006)CrossRefGoogle Scholar
  30. 30.
    J. Yuan, C. Svensson, High-speed CMOS circuit technique. Ieee J Solid-St Circ 24(1), 62–70 (1989)CrossRefGoogle Scholar
  31. 31.
    J. Zhu, L. Wu, X. Zhang, C. Jia, C. Zhang, A low-power 433 MHz transmitter for battery-less Tire Pressure Monitoring System, in 2011 9th IEEE International Conference on ASIC 2011 (IEEE), pp. 184–187Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Microelectronic Research Laboratory, Faculty of Electrical EngineeringSahand University of TechnologyTabrizIran
  2. 2.Microelectronic and Microsensor LaboratoryUniversity of TabrizTabrizIran

Personalised recommendations