Circuits, Systems, and Signal Processing

, Volume 38, Issue 12, pp 5411–5425 | Cite as

A 10-Bit 120 kS/s SAR ADC Without Reset Energy for Biomedical Electronics

  • Xingyuan TongEmail author
  • Mengdi Song
  • Yawen Chen
  • Siwan Dong


A 10-bit 120 kS/s successive-approximation-register analog-to-digital converter (SAR ADC) is realized for implantable multichannel neural recording system. In order to reduce power consumption and area occupation, an improved energy-efficient VCM-based switching scheme is proposed. Different from the monotonic switching scheme, the switching procedure for each bit cycle of this proposed scheme is almost symmetrical, which facilitates the comparator design. Additionally, since all these capacitors are connected to VCM in the sampling phase, the reset energy of this switching scheme is zero. Bootstrapped sampling switches are employed for linearity improvement. Realized in 0.18-µm CMOS, the proposed ADC occupies an active area of 0.13 mm2. Including the I/O and two 4-to-1 multiplexers, the power consumption is 2.97 µW at 120 kS/s sampling rate. The figure-of-merit of this proposed SAR ADC is about 36.9 fJ/conversion-step.


Bioelectronics SAR ADC Low power Capacitor array Switching scheme 



This work was supported by the National Natural Science Foundation of China (Nos. 61674122, 61804124), the key Research and Development Projects in Shaanxi of China (No. 2017KJXX-46) and the Special Support Program for High-level Talents in Shaanxi of China.


  1. 1.
    C.C. Liu, S.J. Chang, G.Y. Huang, Y.Z. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J. Solid-State Circuits 45(4), 731–740 (2010)CrossRefGoogle Scholar
  2. 2.
    J. Liu, R. Ding, S. Liu, Z. Zhu, A highly energy-efficient, highly area-efficient capacitance multiplexing switching scheme for SAR ADC. Analog Integr. Circuits Signal Process. 96(1), 207–215 (2018)CrossRefGoogle Scholar
  3. 3.
    S.K. Lee, S.J. Park, Y. Suh, H.J. Park, J.Y. Sim, A 1.3 μW 0.6 V 8.7-ENOB successive approximation ADC in a 0.18 μm CMOS, in IEEE Symposium on VLSI Circuits Digest of Technical Papers (2009), pp 242–243Google Scholar
  4. 4.
    S. Liu, Y. Shen, Z. Zhu, A 12-bit 10MS/s SAR ADC with high linearity and energy-efficient switching. IEEE Trans. Circuits Syst. I Regul. Pap. 63(10), 1616–2016 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    F. Mei, Y. Shu, Y. Yu, A 10-bit 150MS/s SAR ADC with a novel capacitor switching scheme, in IEEE International Conference on Computational Intelligence and Communication Technology (CICT) (2017), pp 1–6Google Scholar
  6. 6.
    R. Ma, L. Wang, D. Li, R. Ding, Z. Zhu, A 10-bit 100-MS/s 5.23-mW SAR ADC in 0.18-μm CMOS. Microelectron. J. 78, 63–72 (2018)CrossRefGoogle Scholar
  7. 7.
    E. Rahimi, M. Yavari, Energy-efficient high-accuracy switching method for SAR ADCs. Electron. Lett. 50(7), 499–501 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Shen, Z. Zhu, S. Liu, Y. Yang, A reconfigurable 10-to-12-b 80-to-20-MS/s bandwidth scalable SAR ADC. IEEE Trans. Circuits Syst. I Regul. Pap. 65(1), 51–60 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Tong, M. Ghovanloo, Multichannel wireless neural recording AFE architectures: analysis, modeling, and tradeoffs. IEEE Des. Test 33(4), 24–36 (2016)CrossRefGoogle Scholar
  10. 10.
    X. Tong, M. Ghovanloo, An energy-efficient switching scheme in SAR ADC for biomedical electronics. Electron. Lett. 51(9), 676–678 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Wang, S. Liu, Y. Shen, Z. Zhu, Low-power single-ended SAR ADC using symmetrical DAC switching for image sensors with passive CDS and PGA technique. IEEE Trans. Circuits Syst. I Regul. Pap. 65(8), 2378–2388 (2018)CrossRefGoogle Scholar
  12. 12.
    C. Yuan, Y. Lam, Low-energy and area-efficient tri-level switching scheme for SAR ADC. Electron. Lett. 48(9), 482–483 (2012)CrossRefGoogle Scholar
  13. 13.
    T. Yousefi, A. Dabbaghian, M. Yavari, An energy-efficient DAC switching method for SAR ADCs. IEEE Trans. Circuits Syst. II Exp. Briefs 65(1), 41–45 (2018)CrossRefGoogle Scholar
  14. 14.
    X. Yue, Determining the reliable minimum unit capacitance for the DAC capacitor array of SAR ADCs. Microelectron. J. 44(6), 473–478 (2013)CrossRefGoogle Scholar
  15. 15.
    D. Zhang, A. Bhide, A. Alvandpour, A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices. IEEE J. Solid-State Circuits 47(7), 1585–1593 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Zhang, H. Zhang, Q. Sun, J. Li, X. Liu, R. Zhang, A 0.6 V 10-bit 200-kS/s SAR ADC with higher side-reset-and-set switching scheme and hybrid CAP-MOS DAC. IEEE Trans. Circuits Syst. I Regul. Pap. 65(11), 3639–3650 (2018)CrossRefGoogle Scholar
  17. 17.
    W.P. Zhang, X. Tong, Noise modeling and analysis of SAR ADCs. IEEE Trans. VLSI Syst. 23(12), 2922–2930 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Zhu, C.H. Chan, U.F. Chio, S.W. Sin, U. Seng-Pan, R.P. Martins, F. Maloberti, A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J. Solid-State Circuits 45(6), 1111–1121 (2010)CrossRefGoogle Scholar
  19. 19.
    Z. Zhu, Y. Liang, A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18-μm CMOS for medical implant devices. IEEE Trans. Circuits Syst. I Regul. Pap. 62(9), 2167–2176 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xingyuan Tong
    • 1
    Email author
  • Mengdi Song
    • 1
  • Yawen Chen
    • 1
  • Siwan Dong
    • 1
  1. 1.School of Electronics EngineeringXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations