Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 11, pp 4999–5017 | Cite as

H Filter Design for T–S Fuzzy Nonlinear Quadratic Systems with Time-Varying Delay

  • Khadija NaamaneEmail author
  • El Houssaine Tissir
Article

Abstract

This paper focuses on the problem of H filtering for continuous-time T–S fuzzy nonlinear quadratic systems with a varying time delay. To ensure H performance bound for the augmented nonlinear quadratic system constituted by the original system and the filter, we use a quadratic Lyapunov–Krasovskii functional and some inequality conditions. We aim to derive a less conservative result than the existing ones by designing the filter parameters via linear matrix inequalities. Free parameters provide extra degrees of freedom in optimizing the guaranteed H performance and lead to a less conservative design.

Keywords

H filtering Quadratic systems Linear matrix inequalities T–S fuzzy model 

Notes

References

  1. 1.
    F. Ahmida, E.H. Tissir, A new approach to H filtering for switched T–S fuzzy systems with interval time varying delays and parameter uncertainties. Brit. J. Math. Comput. Sci. 6(3), 215–232 (2015)CrossRefGoogle Scholar
  2. 2.
    F. Amato, F. Calabrese, C. Cosentino, A. Merola, Stability analysis of nonlinear quadratic systems via polyhedral Lyapunov functions. Automatica 47(3), 614–617 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    F. Amato, C. Cosentino, A. Merola, On the region of attraction of nonlinear quadratic systems. Automatica 43(12), 2119–2123 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    F. Amato, M. Ariola, C. Cosentino, A. Merola, Output feedback control of nonlinear quadratic systems, in 49th IEEE Conference on Decision and Control, 15–17 Dec (2010)Google Scholar
  5. 5.
    B.D.O. Anderson, J.B. Moore, Optimal Filtering (Dover Publications, New York, 2005)zbMATHGoogle Scholar
  6. 6.
    X.-H. Chang, J. Park, Z. Tang, New approach to H filtering for discrete-time systems with polytopic uncertainties. Sig. Process. 113, 147–158 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Coutinho, C.E. de Souza, Nonlinear state feedback design with a guaranteed stability domain for locally stabilizable unstable quadratic systems. IEEE Trans. Circuits Syst. 59(2), 360–370 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    C.E. de Souza, D. Coutinho, Nonlinear control design for open-loop unstable quadratic discrete-time systems, in IEEE International Conference on Control and Automation (2011), pp. 710–715Google Scholar
  9. 9.
    C.E. de Souza, D. Coutinho, Delay-dependent regional stabilization of nonlinear quadratic time-delay systems, in the 19th World Congress the International Federation of Automatic Control, Cape Town, South Africa, 24–29 Aug (2014)Google Scholar
  10. 10.
    C. El Kasri, A. Hmamed, E.H. Tissir, F. Tadeo, Uncertain 2D continuous systems with state delay filter design using an H polynomial approach. Int. J. Comput. Appl. 44(18), 13–21 (2012)Google Scholar
  11. 11.
    P. Georgescu, G. Morosanu, Pest regulation by means of impulsive controls. Appl. Math. Comput. 19, 790–803 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    A. Hmamed, C. El Kasri, E.H. Tissir, T. Alvarez, F. Tadeo, Robust H filtering for uncertain 2D continuous systems with delays. Int. J. Innov. Comput. Int. Control 9(5), 2167–2183 (2013)zbMATHGoogle Scholar
  13. 13.
    Y.-Y. Hou, Z.-L. Wan, Robust stability for nonlinear systems with time-varying delay and uncertainties via the H quasi-sliding mode control. Int. J. Antennas Propag. (2014).  https://doi.org/10.1155/2014/897179 CrossRefGoogle Scholar
  14. 14.
    M.Y. Huang, S. Dey, Stability of Kalman filtering with Markovian packet losses. Automatica 43(4), 598–607 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    S.J. Huang, X.Q. He, N.N. Zhang, New results on H filter design for nonlinear systems with time delay via T–S fuzzy models. IEEE Trans. Fuzzy Syst. 19(1), 193–199 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Idrissi, E.H. Tissir, Robust stability of T–S fuzzy systems with time-varying delay and polytopic-type uncertainty. Int. J. Ecol. Econ. Stat. 24(1), 17–25 (2012)zbMATHGoogle Scholar
  17. 17.
    S. Idrissi, E.H. Tissir, I. Boumhidi, N. Chaibi, New delay dependent robust stability criteria for T–S fuzzy systems with constant delay. Int. J. Control Autom. Syst. 11(5), 885–892 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Idrissi, E.H. Tissir, I. Boumhidi, N. Chaibi, Delay dependent robust stabilization for uncertain T–S fuzzy systems with additive time varying delays, in Proceeding of the 8th International Conference on Intelligent Systems: Theories and Applications EMI, Rabat, Morocco, 08–09 May (2013)Google Scholar
  19. 19.
    J. Jiao, L. Chen, W. Long, Pulse fishing policy for a stage-structured model with state-dependent harvesting. J. Biol. Syst. 15, 409–416 (2007)zbMATHCrossRefGoogle Scholar
  20. 20.
    M.J. Lacerda, S. Tarbouriech, G. Garcia, P.L.D. Peres, H filter design for nonlinear quadratic systems, in 9th IFAC Symposium on Nonlinear Control Systems The International Federation of Automatic Control, France, 4–6 Sept (2013)Google Scholar
  21. 21.
    F. Lewis, L. Xie, D. Popa, Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory (CRC Press, Boca Raton, 2008)zbMATHGoogle Scholar
  22. 22.
    P. Li, J. Lam, G. Chesi, On the synthesis of linear H filters for polynomial systems. Syst. Control Lett. 61, 31–36 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    F. Li, P. Shi, C.C. Lim, L. Wu, Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Syst. 26(1), 131–141 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Lin, G.Q. Wang, T.H. Lee, B. Chen, H filter design for nonlinear systems with time-delay through T–S fuzzy model approach. IEEE Trans. Fuzzy Syst. 16(3), 739–746 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Lorenzo, S. Bruno, Modelling and Control of Robot Manipulators (McGraw-Hill, New York, 1996)Google Scholar
  26. 26.
    A. Lotka, Elements of Physical Biology (Williams & Wilkins Co., Baltimore, 1925)zbMATHGoogle Scholar
  27. 27.
    Q. Ma, L. Li, J. Shen, H. Guan, G. Ma, H. Xia, Improved fuzzy H filter design method for nonlinear systems with time-varying delay, in IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, Canada, 5–8 Oct (2017)Google Scholar
  28. 28.
    M.S. Mahmoud, P. Shi, A. Ismail, Robust Kalman filtering for discrete-time Markovian jump systems with parameter uncertainty. J. Comput. Appl. Math. 169(1), 53–69 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    X. Meng, Z. Song, L. Chen, A new mathematical model for optimal control strategies of integrated pest management. J. Biol. Syst. 15, 219–234 (2007)zbMATHCrossRefGoogle Scholar
  30. 30.
    A. Merola, C. Cosentino, F. Amato, An insight of tumor dormancy equilibrium via the analysis of its domain of attraction. Biomed. Signal Process. Control 3, 212–219 (2008)CrossRefGoogle Scholar
  31. 31.
    J. Murray, Mathematical Biology (Springer, Berlin, 2002)zbMATHCrossRefGoogle Scholar
  32. 32.
    J. Panetta, A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment. Bull. Math. Biol. 58(3), 425–447 (1996)zbMATHCrossRefGoogle Scholar
  33. 33.
    S. Samba, J.C. Vivalda, Global stabilization of a class of quadratic systems. Automatica 28(5), 1057–1061 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    R.R. Sarkar, S. Banerjee, Cancer self remission and tumor stability—a stochastic approach. Math. Biosci. 196(1), 65–81 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    P. Shi, X. Luan, F. Liu, H filtering for discrete-time systems with stochastic in complete measurement and mixed delays. IEEE Trans. Ind. Electron. 59(6), 2732–2739 (2012)CrossRefGoogle Scholar
  36. 36.
    R. Shulgin, L. Stone, I. Agur, Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60, 425–447 (1998)zbMATHCrossRefGoogle Scholar
  37. 37.
    Y.K. Su, B. Chen, C. Lin, H.G. Zhang, A new fuzzy H filter design for nonlinear continuous-time dynamic systems with time-varying delays. Fuzzy Sets Syst. 160(24), 3539–3549 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    T. Takagi, M. Sugeno, Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)zbMATHCrossRefGoogle Scholar
  39. 39.
    J. Thapar, V. Vittal, W. Kliemann, A.A. Fouad, Application of the normal form of vector fields to predict interarea separation in power systems. IEEE Trans. Power Syst. 12(2), 844–850 (1997)CrossRefGoogle Scholar
  40. 40.
    V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memorie della Reale Accademia Nazionale dei Lincei, Serie VI(2), 31–113 (1926)zbMATHGoogle Scholar
  41. 41.
    Y. Wang, X. Zhang, Z. Hu, Delay-dependent robust H filtering of uncertain stochastic genetic regulatory networks with mixed time-varying delays. Neurocomputing 166, 346–356 (2015)CrossRefGoogle Scholar
  42. 42.
    T. Wu, F. Li, Ch. Yang, W. Gui, Event-based fault detection filtering for complex networked jump systems. IEEE/ASME Trans. Mechatron. 23(2), 497–505 (2018)CrossRefGoogle Scholar
  43. 43.
    L. Xie, Y.C. Soh, Robust Kalman filtering for uncertain systems. Syst. Control Lett. 22, 123–129 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    A. Zabari, E.H. Tissir, S. Kririm, Delay dependent robust H filter design for discrete-time systems with missing measurements via homogeneous polynomial matrices. Int. J. Autom. Smart Technol. 6(3), 163–175 (2016).  https://doi.org/10.5875/ausmt.v.6i3.1112 CrossRefGoogle Scholar
  45. 45.
    A. Zabari, E.H. Tissir, F. Tadeo, Delay dependent robust H filtering with lossy measurements for discrete-time systems. Arab. J. Sci. Eng. 42(12), 5263–5273 (2017).  https://doi.org/10.1007/s13369-017-2608-x MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    J.H. Zhang, Y.Q. Xiao, R. Tao, New results on H filtering for fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. 17(1), 128–137 (2009)CrossRefGoogle Scholar
  47. 47.
    Y. Zhao, H. Gao, J. Lam, New results on H filtering for fuzzy systems with interval time-varying delays. Inf. Sci. 181, 2356–2369 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    T. Zhou, X.Q. He, An improved H filter design for nonlinear systems described T–S fuzzy models with time-varying delay. Int. J. Autom. Comput. 12(6), 671–678 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LESSI, Department of Physics, Faculty of Sciences Dhar El MehrazUniversity Sidi Mohammed Ben AbdellahFesMorocco

Personalised recommendations