Second Minimum Approximation for Min-Sum Decoders Suitable for High-Rate LDPC Codes

  • J. M. Català-Pérez
  • J. O. Lacruz
  • F. García-Herrero
  • J. VallsEmail author
  • David Declercq


In this paper, a method to approximate the second minimum required in the computation of the check node update of an LDPC decoder based on min-sum algorithm is presented. The proposed approximation compensates the performance degradation caused by the utilization of a first minimum and pseudo-second minimum finder instead of a true two minimum finder in the min-sum algorithm and improves the BER performance of high-rate LDPC codes in the error floor region. This approach applied to a complete decoder reduces the critical path and the area with independence of the selected architecture. Therefore, this method increases the maximum throughput achieved by the decoder and its area-throughput efficiency. The increase in efficiency is proportional to the degree of the check node, so the higher the code rate is, the higher the improvement in area and speed is.


LDPC codes Decoding Min-sum Two minimum finder High-speed architecture 



  1. 1.
    L. Amaru, M. Martina, G. Masera, High speed architectures for finding the first two maximum/minimum values. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(12), 2342–2346 (2012). CrossRefGoogle Scholar
  2. 2.
    F. Angarita, V. Torres, A. Perez-Pascual, J. Valls, High-throughput FPGA-based emulator for structured LDPC codes. in 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2012), pp. 404–407.
  3. 3.
    F. Angarita, J. Valls, V. Almenar, V. Torres, Reduced-complexity min-sum algorithm for decoding LDPC codes with low error-floor. IEEE Tran. Circuits Syst. I Regul. Pap. 61(7), 2150–2158 (2014). CrossRefGoogle Scholar
  4. 4.
    D. Bao, X. Chen, Y. Huang, C. Wu, Y. Chen, X.Y. Zeng, A single-routing layered LDPC decoder for 10Gbase-T Ethernet in 130nm CMOS, in 17th Asia and South Pacific Design Automation Conference (ASP-DAC) (2012), pp. 565–566.
  5. 5.
    A. Cevrero, Y. Leblebici, P. Ienne, A. Burg, A 5.35 mm\(^{2}\) 10GBASE-T Ethernet LDPC decoder chip in 90 nm CMOS, in IEEE Asian Solid State Circuits Conference (A-SSCC) (2010), pp. 1–4.
  6. 6.
    J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, X.Y. Hu, Reduced-complexity decoding of LDPC codes. IEEE Trans. Commun. 53(8), 1288–1299 (2005). CrossRefGoogle Scholar
  7. 7.
    C.C. Cheng, J.D. Yang, H.C. Lee, C.H. Yang, Y.L. Ueng, A fully parallel LDPC decoder architecture using probabilistic min-sum algorithm for high-throughput applications. IEEE Tran. Circuits Syst. I Regul. Pap. 61(9), 2738–2746 (2014). CrossRefGoogle Scholar
  8. 8.
    A. Darabiha, A. Carusone, F. Kschischang, A bit-serial approximate min-sum LDPC decoder and FPGA implementation, in IEEE International Symposium on Circuits and Systems, 2006. ISCAS (2006), p. 4.
  9. 9.
    Q. Diao, J. Li, S. Lin, I.F. Blake, New classes of partial geometries and their associated LDPC codes. IEEE Trans. Inf. Theory 62(6), 2947–2965 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    R. Gallager, Low-density parity-check codes. IEEE Trans. Inf. Theory 8(1), 21–28 (1962). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    R. Ghanaatian, A. Balatsoukas-Stimming, T.C. Mller, M. Meidlinger, G. Matz, A. Teman, A. Burg, A 588-gb/s LDPC decoder based on finite-alphabet message passing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(2), 329–340 (2018). CrossRefGoogle Scholar
  12. 12.
    F. Kschischang, B. Frey, H.A. Loeliger, Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J.O. Lacruz, F. Garca-Herrero, J. Valls, D. Declercq, One minimum only trellis decoder for non-binary low-density parity-check codes. IEEE Tran. Circuits Syst. I Regul. Pap. 62(1), 177–184 (2015). CrossRefGoogle Scholar
  14. 14.
    Y. Lee, B. Kim, J. Jung, I.C. Park, Low-complexity tree architecture for finding the first two minima. IEEE Trans. Circuits Syst. II Express Briefs 62(1), 61–64 (2015). CrossRefGoogle Scholar
  15. 15.
    T. Mohsenin, D. Truong, B. Baas, A Low-complexity message-passing algorithm for reduced routing congestion in LDPC decoders. IEEE Tran. Circuits Syst. I Regul. Pap. 57(5), 1048–1061 (2010). MathSciNetCrossRefGoogle Scholar
  16. 16.
    I. Tsatsaragkos, V. Paliouras, Approximate algorithms for identifying minima on min-sum LDPC decoders and their hardware implementation. IEEE Trans. Circuits Syst. II Express Briefs 62(8), 766–770 (2015). CrossRefGoogle Scholar
  17. 17.
    Y.L. Ueng, C.Y. Wang, M.R. Li, An efficient combined bit-flipping and stochastic LDPC decoder using improved probability tracers. IEEE Trans. Signal Process. 65(20), 5368–5380 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    C. Zhang, Z. Wang, J. Sha, L. Li, J. Lin, Flexible LDPC decoder design for multigigabit-per-second applications. IEEE Tran. Circuits Syst. I Regul. Pap. 57(1), 116–124 (2010). MathSciNetCrossRefGoogle Scholar
  19. 19.
    B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, M. Xu, Construction of non-binary quasi-cyclic LDPC codes by arrays and array dispersions. IEEE Trans. Commun. 57(6), 1652–1662 (2009). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.iTEAMUniversitat Politècnica de ValènciaGandiaSpain
  2. 2.ARIES Research CenterUniversidad Antonio de NebrijaMadridSpain
  3. 3.IMDEA Networks InstituteMadridSpain
  4. 4.ETIS Laboratory, ENSEA, CNRS-UMR-8051Univ. Cergy-PontoiseCergy-PontoiseFrance
  5. 5.Instituto de Telecomunicaciones y Aplicaciones Multimedia (ITEAM)Universitat Politècnica de ValènciaValènciaSpain

Personalised recommendations