Advertisement

Levin’s Transformation-based Continuous-Time Linear-Phase Selective Filters

  • Goutham MakkenaEmail author
  • M. B. Srinivas
Article
  • 12 Downloads

Abstract

In this paper, authors derive a family of linear-phase selective filters based on Levin’s transformation. The approach consists of developing an approximation to the Laplace transform of impulse response of the chosen linear-phase selective filter using a sum of shifted and scaled causal splines. This approximation is then rationalized using Levin’s transformation to obtain a realizable medium-order transfer function which is then balanced and truncated to the required order. The magnitude and phase features of the filter derived are presented and discussed. It is shown that the closed-form solution obtained can act as a starting point for approximation methods that use local search routines.

Keywords

Linear-phase selective filters Continuous-time filters Causal splines 

Notes

References

  1. 1.
    J.H. Ahlberg, E.N. Nilson, J.L. Walsh, in The Theory of Splines and Their Applications. Mathematics in Science and Engineering (Academic Press, New York, 1967)Google Scholar
  2. 2.
    H. Baher, M. O’Malley, Generalized approximation techniques for selective linear-phase digital and nonreciprocal lumped filters. IEEE Trans. Circuits Syst. 33(12), 1159–1169 (1986)CrossRefGoogle Scholar
  3. 3.
    G.A. Baker, P.R. Graves-Morris, Padé Approximants, vol. 59 (Cambridge University Press, Cambridge, 1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    D.B. Carvalho, R. Seara et al., Impulse response symmetry error for designing phase equalisers. Electron. Lett. 35(13), 1052–1054 (1999)CrossRefGoogle Scholar
  5. 5.
    A.J. Casson, E. Rodriguez-Villegas, A 60 pw g c continuous wavelet transform circuit for portable eeg systems. IEEE J. Solid-State Circuits 46(6), 1406–1415 (2011)CrossRefGoogle Scholar
  6. 6.
    I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M.F. Fahmy, M.I. Sobhy, Selective constant delay filters with chebyshev passband amplitude response. Int. J. Circuit Theory Appl. 8(2), 190–195 (1980)CrossRefGoogle Scholar
  8. 8.
    I.M. Filanovsky, P.N. Matkhanov, Synthesis of a pulse-forming reactance network shaping a quasi-rectangular delayed output pulse. IEEE Trans. Circuits Syst. II: Express Briefs 51(4), 190–194 (2004).  https://doi.org/10.1109/TCSII.2004.824052. ISSN 1549-7747CrossRefGoogle Scholar
  9. 9.
    I.M. Filanovsky, P.N. Matkhanov, Synthesis of reactance networks shaping a quasi-rectangular pulse. IEEE Trans. Circuits Syst. II: Express Briefs 52(5), 242–245 (2005).  https://doi.org/10.1109/TCSII.2005.843593. ISSN 1549-7747CrossRefGoogle Scholar
  10. 10.
    I.M. Filanovsky, P.N. Matkhanov, Synthesis of time delay networks approximating the pulse response described by an integer power of a sinusoid over its semi-period. Analog Integr. Circuits Signal Process. 28(1), 83–90 (2001)CrossRefGoogle Scholar
  11. 11.
    H. Gutsche, Approximation of transfer functions for filters with equalized group-delay characteristics. Siemens Forschungs-und Entwicklungsberichte 2(5), 288–292 (1973)Google Scholar
  12. 12.
    S.A.P. Haddad, S. Bagga, W. Serdijn et al., Log-domain wavelet bases. IEEE Trans. Circuits and Syst. I: Regul. Pap. 52(10), 2023–2032 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Hibino, Y. Ishizaki, H. Watanabe, Design of chebyshev filters with flat group-delay characteristics. IEEE Trans. Circuit Theory 15(4), 316–325 (1968)CrossRefGoogle Scholar
  14. 14.
    X. Huang, S. Jing, Z. Wang, Y. Xu, Y. Zheng, Closed-form fir filter design based on convolution window spectrum interpolation. IEEE Trans. Signal Process. 64(5), 1173–1186 (2016).  https://doi.org/10.1109/TSP.2015.2494869. ISSN 1053-587XMathSciNetzbMATHGoogle Scholar
  15. 15.
    H. Kamada, N. Aoshima, Analog gabor transform filter with complex first order system, in Proceedings of the 36th SICE Annual Conference. International Session Papers SICE’97. (IEEE, 1997) pp. 925–930Google Scholar
  16. 16.
    J.M.H. Karel, S.A.P. Haddad, S. Hiseni, R.L. Westra, W. Serdijn, R.L.M. Peeters et al., Implementing wavelets in continuous-time analog circuits with dynamic range optimization. IEEE Trans. Circuits Syst. I: Regul. Pap. 59(2), 229–242 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    D. Levin, Development of non-linear transformations for improving convergence of sequences. Int. J. Compu. Math. 3(1–4), 371–388 (1973)MathSciNetzbMATHGoogle Scholar
  18. 18.
    V. Litovski, Synthesis of monotonic passband sharp cutoff filters with constant group delay response. IEEE Trans. Circuits Syst. 26(8), 597–602 (1979)CrossRefzbMATHGoogle Scholar
  19. 19.
    A. Ljutic, S. Djukic, M. Vucic, Time-domain synthesis of linear-phase selective filters, in 2010 Proceedings of the 33rd International Convention, MIPRO. 2010, pp. 165–170Google Scholar
  20. 20.
    G. Makkena, M.B. Srinivas, Nonlinear sequence transformation-based continuous-time wavelet filter approximation. Circuits Syst. Signal Process. 37(3), 965–983 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    G. Makkena, K.N. Abhilash, M.B. Srinivas, Gaussian filter approximation using Levin’s transformation for implementation in analog domain, in 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) (IEEE, 2013), pp. 204–207Google Scholar
  22. 22.
    J.P. Marmorat, M. Olivi, RARL2: a matlab based software for \(H^2\) rational approximation (2004)Google Scholar
  23. 23.
    S.V. Nikolić, G.Z. Stančić, S. Cvetković, Design of nearly linear-phase double notch digital filters with close notch frequencies. IET Signal Process. 12, 1107–1114 (2018)CrossRefGoogle Scholar
  24. 24.
    L. Pernebo, L.M. Silverman, Model reduction via balanced state space representations. IEEE Trans. Autom. Control 27(2), 382–387 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    B. Rakovich, V. Litovski, Monotonic passband low-pass filters with Chebyshev stopband attenuation. IEEE Trans. Acoust. Speech Signal Process. 22(1), 39–44 (1974)CrossRefGoogle Scholar
  26. 26.
    B.D. Rakovich, V.B. Litovski, Least-squares monotonic lowpass filters with sharp cutoff. Electron. Lett. 9(4), 75–76 (1973)CrossRefGoogle Scholar
  27. 27.
    B.D. Rakovich, M.D. Radmanović, M.V. Popovich, Transfer functions of selective filters with equalised passband group delay response. IEE Proc. G (Electron. Circuits Syst.) 129, 11–18 (1982)CrossRefGoogle Scholar
  28. 28.
    D. Rhodes, I.H. Zabalawi, Design of selective linear-phase filters with equiripple amplitude characteristics. IEEE Trans. Circuits Syst. 25(12), 989–1000 (1978)CrossRefzbMATHGoogle Scholar
  29. 29.
    S. Sadughi, H.K. Kim, An approximation procedure for selective linear phase filters. IEEE Trans. Circuits Syst. 34(8), 967–969 (1987)MathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Sadughi, G. Martens, H. Kim, Selective linear-phase filters with controllable amplitude response. IEEE Trans. Circuits Syst. 32(8), 858–862 (1985)CrossRefGoogle Scholar
  31. 31.
    K. Sainath, F. Teixeira, B. Donderici, Complex-valued levin transforms: a robust algorithm for field computation in anisotropic-layered media, in Antennas and Propagation Society International Symposium (APSURSI) (IEEE, 2014), pp. 2024–2025Google Scholar
  32. 32.
    K. Sainath, F.L. Teixeira, B. Donderici, Complex-plane generalization of scalar levin transforms: a robust, rapidly convergent method to compute potentials and fields in multi-layered media. J. Comput. Phys. 269, 403–422 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    M. Unser, T. Blu, Fractional splines and wavelets. SIAM Rev. 42(1), 43–67 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    M. Vucic, G. Molnar, Measure for phase linearity based on symmetry of time-domain response. Electron. Lett. 39(19), 1425–1426 (2003)CrossRefGoogle Scholar
  35. 35.
    M. Vucic, G. Molnar, Time-domain synthesis of continuous-time systems based on second-order cone programming. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(10), 3110–3118 (2008).  https://doi.org/10.1109/TCSI.2008.925379. ISSN 1549-8328MathSciNetCrossRefGoogle Scholar
  36. 36.
    M. Vucic, G. Molnar, Equaliser design based on maximum of response to sinc pulse. Electron. Lett. 41(19), 1089–1090 (2005)CrossRefGoogle Scholar
  37. 37.
    M. Vucic, G. Molnar, S. Djukic, Synthesis of linear-phase selective filters based on maximum of time-domain response, in IEEE International Symposium on Circuits and Systems (ISCAS) 2011, pp. 1648–1651.  https://doi.org/10.1109/ISCAS.2011.5937896
  38. 38.
    E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10(5), 189–371 (1989)CrossRefGoogle Scholar
  39. 39.
    H.S. Xu, J. Da Zhu, P. Dai, Novel acceleration methods for electromagnetic modeling of high-speed interconnects in distribution grids ASIC, in China International Conference on Electricity Distribution (CICED) (IEEE, 2016), pp. 1–5Google Scholar
  40. 40.
    H. Xu, K. Chen, J. Song, T. Kamgaing, Y.S. Mekonnen, A novel approach to accelerate spectral domain approach for shielded microstrip lines using the levin transformations and summation-by-parts. Radio Sci. 49(8), 573–582 (2014)CrossRefGoogle Scholar
  41. 41.
    H. Xu, J. Song, T. Kamgaing, Y.S. Mekonnen, The extrapolation methods in acceleration of SDA for shielded microstrip lines, in Antennas and Propagation Society International Symposium (APSURSI) (IEEE 2014), pp. 2118–2119Google Scholar
  42. 42.
    H. Xu, S. Jain, J. Song, T. Kamgaing, Y.S. Mekonnen, Acceleration of spectral domain immitance approach for generalized multilayered shielded microstrips using the Levin’s transformation. IEEE Antennas Wirel. Propag. Lett. 14, 92–95 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringBirla Institute of Technology and Science - PilaniHyderabadIndia
  2. 2.Department of Electrical EngineeringBML Munjal UniversityGurgaon, New DelhiIndia

Personalised recommendations