Robust Novel Affine Projection Sign Subband Adaptive Filter Algorithm

  • Qianqian LiuEmail author
  • Haiquan Zhao


This paper presents a novel affine projection sign subband adaptive filter (NAPSSAF) which could achieve better performance than the conventional APSSAF. The proposed NAPSSAF is obtained by solving the optimal problems regarding the l1-norm of the subband a posteriori error vectors rather than overall a posteriori error vector, which fully uses the subband adaptive filter’s inherent decorrelating property. However, since the NAPSSAF algorithm uses the fixed step size, it has an inherent trade-off between low steady-state error and fast convergence rate. Thus, we also propose a combined step size NAPSSAF (CSS-NAPSSAF) to further improve the performance of the NAPSSAF. Finally, simulations are carried out to exhibit the advantages of the NAPSSAF and CSS-NAPSSAF algorithms. The results of simulations demonstrate that the NAPSSAF is superior to the existing algorithms. Besides, the results of simulations also exhibit the improved performance of the CSS-NAPSSAF compared to NAPSSAF.


Sign subband adaptive filter Affine projection algorithm Impulsive interference 



This work was partially supported by National Science Foundation of P.R. China (Grant: 61571374, 61271340 and 61433011).


  1. 1.
    F. Huang, J. Zhang, S. Zhang, Combined step sizes affine projection sign algorithm for robust adaptive filtering in impulsive interference environments. IEEE Trans. Circuits Syst. II Express Briefs 63(5), 493–497 (2016)CrossRefGoogle Scholar
  2. 2.
    J.H. Kim, J.H. Chang, S.W. Nam, Sign subband adaptive filter with l1-norm minimisation-based variable step-size. Electron. Lett. 49(21), 1325–1326 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Kim, J. Kim, J. Hyeon Jeon, S.W. Nam, Delayless individual-weighting-factors sign subband adaptive filter with band-dependent variable step-sizes. IEEE/ACM Trans. Audio Speech Lang. Process. 25(7), 1526–1534 (2017)CrossRefGoogle Scholar
  4. 4.
    S.H. Kim, J.J. Jeong, J.H. Choi, S.W. Kim, Variable step-size affine projection sign algorithm using selective input vectors. Sig. Process. 115, 151–156 (2015)CrossRefGoogle Scholar
  5. 5.
    K.A. Lee, W.S. Gan, S.M. Kuo, Subband Adaptive Filter: Theory and Implementation (Wiley, Chichester, 2009)CrossRefGoogle Scholar
  6. 6.
    K.A. Lee, W.S. Gan, Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Process. Lett. 11(9), 736–739 (2004)CrossRefGoogle Scholar
  7. 7.
    L. Lu, H. Zhao, B. Champagne, Distributed nonlinear system identification in α-stable noise. IEEE Signal Process. Lett. 25(7), 979–983 (2018)CrossRefGoogle Scholar
  8. 8.
    L. Lu, W. Wang, X. Yang, W. Wu, G. Zhu, Recursive Geman-mcclure estimator for implementing second-order Volterra filter. IEEE Trans. Circuits Syst. II Express Briefs (2018). Google Scholar
  9. 9.
    V.J. Mathews, S.H. Cho, Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm. IEEE Trans. Acoust. Speech Signal Process. 35(4), 450–454 (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    V.J. Mathews, Performance analysis of adaptive filters equipped with the dual sign algorithm IEEE Trans. Acoust. Speech Signal Process. 39(1), 85–91 (1991)zbMATHGoogle Scholar
  11. 11.
    J. Ni, F. Li, A variable step-size matrix normalized subband adaptive filter. IEEE Trans. Audio Speech Lang. Process. 18(6), 1290–1299 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Ni, F. Li, Variable regularisation parameter sign subband adaptive filter. Electron. Lett. 46(24), 1605–1607 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Ni, Improved normalised subband adaptive filter. Electron. Lett. 48(6), 320–321 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Ni, X. Chen, J. Yang, Two variants of the sign subband adaptive filter with improved convergence rate. Signal Process. 96, 325–331 (2014)CrossRefGoogle Scholar
  15. 15.
    T. Shao, Y.R. Zheng, J. Benesty, An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010)CrossRefGoogle Scholar
  16. 16.
    J.H. Seo, P.G. Park, Variable individual step-size subband adaptive filtering algorithm”. Electron. Lett. 50(3), 177–178 (2014)CrossRefGoogle Scholar
  17. 17.
    J.W. Shin, J.W. Yoo, P.G. Park, Variable step-size sign subband adaptive filter. IEEE Signal Process. Lett. 20(2), 173–176 (2013)CrossRefGoogle Scholar
  18. 18.
    A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley, New York, 2003)Google Scholar
  19. 19.
    W. Wang, H. Zhao, Boxed-constraint least mean square algorithm and its performance analysis. Sig. Process. 144, 201–213 (2018)CrossRefGoogle Scholar
  20. 20.
    W. Wang, H. Zhao, B. Chen, Bias compensated zero attracting normalized least mean square adaptive filter and its performance analysis. Sig. Process. 143, 94–105 (2018)CrossRefGoogle Scholar
  21. 21.
    W. Wang, H. Zhao, Performance analysis of diffusion LMS algorithm for cyclostationary inputs. Sig. Process. 150, 33–50 (2018)CrossRefGoogle Scholar
  22. 22.
    F.Y. Wu, F. Tong, Non-uniform norm constraint LMS algorithm for sparse system identification. IEEE Commun. Lett. 17(2), 385–388 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J.W. Yoo, J.W. Shin, P.G. Park, A band-dependent variable step-size sign subband adaptive filter. Signal Process. 104, 407–411 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Yu, H. Zhao, Novel sign subband adaptive filter algorithms with individual weighting factors. Sig. Process. 122, 14–23 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Yu, H. Zhao, Novel combination schemes of individual weighting factors sign subband adaptive filter algorithm. Int. J. Adapt. Control Signal Process. 31(8), 1193–1204 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Y. Yu, H. Zhao, Performance analysis of the deficient length NSAF algorithm and a variable step size method for improving its performance. Digit. Signal Proc. 62, 157–167 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Yu, H. Zhao, B. Chen, A new normalized subband adaptive filter algorithm with individual variable step sizes. Circuits Syst. Signal Process. 35(4), 1407–1418 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Magnetic Suspension Technology and Maglev VehicleMinistry of EducationChengduChina
  2. 2.School of Electrical EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations